| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
angcld.1 |
|- ( ph -> X e. CC ) |
| 3 |
|
angcld.2 |
|- ( ph -> X =/= 0 ) |
| 4 |
|
angcld.3 |
|- ( ph -> Y e. CC ) |
| 5 |
|
angcld.4 |
|- ( ph -> Y =/= 0 ) |
| 6 |
1 2 3 4 5
|
angvald |
|- ( ph -> ( X F Y ) = ( Im ` ( log ` ( Y / X ) ) ) ) |
| 7 |
4 2 3
|
divcld |
|- ( ph -> ( Y / X ) e. CC ) |
| 8 |
4 2 5 3
|
divne0d |
|- ( ph -> ( Y / X ) =/= 0 ) |
| 9 |
7 8
|
logimclad |
|- ( ph -> ( Im ` ( log ` ( Y / X ) ) ) e. ( -u _pi (,] _pi ) ) |
| 10 |
6 9
|
eqeltrd |
|- ( ph -> ( X F Y ) e. ( -u _pi (,] _pi ) ) |