Description: The (signed) angle between two vectors is in ( -upi (,] pi ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ang.1 | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
angcld.1 | |- ( ph -> X e. CC ) |
||
angcld.2 | |- ( ph -> X =/= 0 ) |
||
angcld.3 | |- ( ph -> Y e. CC ) |
||
angcld.4 | |- ( ph -> Y =/= 0 ) |
||
Assertion | angcld | |- ( ph -> ( X F Y ) e. ( -u _pi (,] _pi ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ang.1 | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
2 | angcld.1 | |- ( ph -> X e. CC ) |
|
3 | angcld.2 | |- ( ph -> X =/= 0 ) |
|
4 | angcld.3 | |- ( ph -> Y e. CC ) |
|
5 | angcld.4 | |- ( ph -> Y =/= 0 ) |
|
6 | 1 2 3 4 5 | angvald | |- ( ph -> ( X F Y ) = ( Im ` ( log ` ( Y / X ) ) ) ) |
7 | 4 2 3 | divcld | |- ( ph -> ( Y / X ) e. CC ) |
8 | 4 2 5 3 | divne0d | |- ( ph -> ( Y / X ) =/= 0 ) |
9 | 7 8 | logimclad | |- ( ph -> ( Im ` ( log ` ( Y / X ) ) ) e. ( -u _pi (,] _pi ) ) |
10 | 6 9 | eqeltrd | |- ( ph -> ( X F Y ) e. ( -u _pi (,] _pi ) ) |