| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 |  |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) | 
						
							| 2 |  | mulm1 |  |-  ( A e. CC -> ( -u 1 x. A ) = -u A ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u 1 x. A ) = -u A ) | 
						
							| 4 |  | mulm1 |  |-  ( B e. CC -> ( -u 1 x. B ) = -u B ) | 
						
							| 5 | 4 | ad2antrl |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u 1 x. B ) = -u B ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( -u A F -u B ) ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 9 | 7 8 | pm3.2i |  |-  ( -u 1 e. CC /\ -u 1 =/= 0 ) | 
						
							| 10 | 1 | angcan |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( -u 1 e. CC /\ -u 1 =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( A F B ) ) | 
						
							| 11 | 9 10 | mp3an3 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( A F B ) ) | 
						
							| 12 | 6 11 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u A F -u B ) = ( A F B ) ) |