Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvd.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
angpieqvd.A |
|- ( ph -> A e. CC ) |
3 |
|
angpieqvd.B |
|- ( ph -> B e. CC ) |
4 |
|
angpieqvd.C |
|- ( ph -> C e. CC ) |
5 |
|
angpieqvd.AneB |
|- ( ph -> A =/= B ) |
6 |
|
angpieqvd.BneC |
|- ( ph -> B =/= C ) |
7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
8 |
7
|
biimpar |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
9 |
2
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A e. CC ) |
10 |
3
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> B e. CC ) |
11 |
4
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> C e. CC ) |
12 |
5
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A =/= B ) |
13 |
1 2 3 4 5 6
|
angpined |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> A =/= C ) ) |
14 |
13
|
imp |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> A =/= C ) |
15 |
9 10 11 12 14
|
angpieqvdlem |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) ) |
16 |
8 15
|
mpbid |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) |
17 |
4 3
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - B ) e. CC ) |
19 |
4 2
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - A ) e. CC ) |
21 |
14
|
necomd |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> C =/= A ) |
22 |
11 9 21
|
subne0d |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - A ) =/= 0 ) |
23 |
18 20 22
|
divcan1d |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) = ( C - B ) ) |
24 |
23
|
eqcomd |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( C - B ) = ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) ) |
25 |
18 20 22
|
divcld |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( ( C - B ) / ( C - A ) ) e. CC ) |
26 |
9 10 11 25
|
affineequiv |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> ( B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) <-> ( C - B ) = ( ( ( C - B ) / ( C - A ) ) x. ( C - A ) ) ) ) |
27 |
24 26
|
mpbird |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) |
28 |
|
oveq1 |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( w x. A ) = ( ( ( C - B ) / ( C - A ) ) x. A ) ) |
29 |
|
oveq2 |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( 1 - w ) = ( 1 - ( ( C - B ) / ( C - A ) ) ) ) |
30 |
29
|
oveq1d |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( ( 1 - w ) x. C ) = ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) |
31 |
28 30
|
oveq12d |
|- ( w = ( ( C - B ) / ( C - A ) ) -> ( ( w x. A ) + ( ( 1 - w ) x. C ) ) = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) |
32 |
31
|
rspceeqv |
|- ( ( ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) /\ B = ( ( ( ( C - B ) / ( C - A ) ) x. A ) + ( ( 1 - ( ( C - B ) / ( C - A ) ) ) x. C ) ) ) -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) |
33 |
16 27 32
|
syl2anc |
|- ( ( ph /\ ( ( A - B ) F ( C - B ) ) = _pi ) -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) |
34 |
33
|
ex |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) ) |
35 |
2
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> A e. CC ) |
36 |
3
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> B e. CC ) |
37 |
4
|
adantr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> C e. CC ) |
38 |
|
simpr |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> w e. ( 0 (,) 1 ) ) |
39 |
|
elioore |
|- ( w e. ( 0 (,) 1 ) -> w e. RR ) |
40 |
|
recn |
|- ( w e. RR -> w e. CC ) |
41 |
38 39 40
|
3syl |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> w e. CC ) |
42 |
35 36 37 41
|
affineequiv |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) <-> ( C - B ) = ( w x. ( C - A ) ) ) ) |
43 |
|
simp3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) = ( w x. ( C - A ) ) ) |
44 |
17
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) e. CC ) |
45 |
41
|
3adant3 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> w e. CC ) |
46 |
19
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - A ) e. CC ) |
47 |
6
|
necomd |
|- ( ph -> C =/= B ) |
48 |
4 3 47
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
49 |
48
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - B ) =/= 0 ) |
50 |
43 49
|
eqnetrrd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( w x. ( C - A ) ) =/= 0 ) |
51 |
45 46 50
|
mulne0bbd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( C - A ) =/= 0 ) |
52 |
44 45 46 51
|
divmul3d |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( ( C - B ) / ( C - A ) ) = w <-> ( C - B ) = ( w x. ( C - A ) ) ) ) |
53 |
43 52
|
mpbird |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( C - B ) / ( C - A ) ) = w ) |
54 |
|
simp2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> w e. ( 0 (,) 1 ) ) |
55 |
53 54
|
eqeltrd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) |
56 |
2
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A e. CC ) |
57 |
3
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> B e. CC ) |
58 |
4
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> C e. CC ) |
59 |
5
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A =/= B ) |
60 |
58 56 51
|
subne0ad |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> C =/= A ) |
61 |
60
|
necomd |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> A =/= C ) |
62 |
56 57 58 59 61
|
angpieqvdlem |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) ) |
63 |
55 62
|
mpbird |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
64 |
6
|
3ad2ant1 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> B =/= C ) |
65 |
1 56 57 58 59 64
|
angpieqvdlem2 |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
66 |
63 65
|
mpbid |
|- ( ( ph /\ w e. ( 0 (,) 1 ) /\ ( C - B ) = ( w x. ( C - A ) ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) |
67 |
66
|
3expia |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( ( C - B ) = ( w x. ( C - A ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
68 |
42 67
|
sylbid |
|- ( ( ph /\ w e. ( 0 (,) 1 ) ) -> ( B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
69 |
68
|
rexlimdva |
|- ( ph -> ( E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) -> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
70 |
34 69
|
impbid |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi <-> E. w e. ( 0 (,) 1 ) B = ( ( w x. A ) + ( ( 1 - w ) x. C ) ) ) ) |