Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvdlem.A |
|- ( ph -> A e. CC ) |
2 |
|
angpieqvdlem.B |
|- ( ph -> B e. CC ) |
3 |
|
angpieqvdlem.C |
|- ( ph -> C e. CC ) |
4 |
|
angpieqvdlem.AneB |
|- ( ph -> A =/= B ) |
5 |
|
angpieqvdlem.AneC |
|- ( ph -> A =/= C ) |
6 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
7 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
8 |
1 2 4
|
subne0d |
|- ( ph -> ( A - B ) =/= 0 ) |
9 |
6 7 8
|
divcld |
|- ( ph -> ( ( C - B ) / ( A - B ) ) e. CC ) |
10 |
9
|
negcld |
|- ( ph -> -u ( ( C - B ) / ( A - B ) ) e. CC ) |
11 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
12 |
5
|
necomd |
|- ( ph -> C =/= A ) |
13 |
3 1 2 12
|
subneintr2d |
|- ( ph -> ( C - B ) =/= ( A - B ) ) |
14 |
6 7 8 13
|
divne1d |
|- ( ph -> ( ( C - B ) / ( A - B ) ) =/= 1 ) |
15 |
9 11 14
|
negned |
|- ( ph -> -u ( ( C - B ) / ( A - B ) ) =/= -u 1 ) |
16 |
10 15
|
xov1plusxeqvd |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( -u ( ( C - B ) / ( A - B ) ) / ( 1 + -u ( ( C - B ) / ( A - B ) ) ) ) e. ( 0 (,) 1 ) ) ) |
17 |
6 7 8
|
divnegd |
|- ( ph -> -u ( ( C - B ) / ( A - B ) ) = ( -u ( C - B ) / ( A - B ) ) ) |
18 |
3 2
|
negsubdi2d |
|- ( ph -> -u ( C - B ) = ( B - C ) ) |
19 |
18
|
oveq1d |
|- ( ph -> ( -u ( C - B ) / ( A - B ) ) = ( ( B - C ) / ( A - B ) ) ) |
20 |
17 19
|
eqtrd |
|- ( ph -> -u ( ( C - B ) / ( A - B ) ) = ( ( B - C ) / ( A - B ) ) ) |
21 |
7 8
|
dividd |
|- ( ph -> ( ( A - B ) / ( A - B ) ) = 1 ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( ( A - B ) / ( A - B ) ) - ( ( C - B ) / ( A - B ) ) ) = ( 1 - ( ( C - B ) / ( A - B ) ) ) ) |
23 |
7 6 7 8
|
divsubdird |
|- ( ph -> ( ( ( A - B ) - ( C - B ) ) / ( A - B ) ) = ( ( ( A - B ) / ( A - B ) ) - ( ( C - B ) / ( A - B ) ) ) ) |
24 |
11 9
|
negsubd |
|- ( ph -> ( 1 + -u ( ( C - B ) / ( A - B ) ) ) = ( 1 - ( ( C - B ) / ( A - B ) ) ) ) |
25 |
22 23 24
|
3eqtr4rd |
|- ( ph -> ( 1 + -u ( ( C - B ) / ( A - B ) ) ) = ( ( ( A - B ) - ( C - B ) ) / ( A - B ) ) ) |
26 |
1 3 2
|
nnncan2d |
|- ( ph -> ( ( A - B ) - ( C - B ) ) = ( A - C ) ) |
27 |
26
|
oveq1d |
|- ( ph -> ( ( ( A - B ) - ( C - B ) ) / ( A - B ) ) = ( ( A - C ) / ( A - B ) ) ) |
28 |
25 27
|
eqtrd |
|- ( ph -> ( 1 + -u ( ( C - B ) / ( A - B ) ) ) = ( ( A - C ) / ( A - B ) ) ) |
29 |
20 28
|
oveq12d |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) / ( 1 + -u ( ( C - B ) / ( A - B ) ) ) ) = ( ( ( B - C ) / ( A - B ) ) / ( ( A - C ) / ( A - B ) ) ) ) |
30 |
2 3
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
31 |
1 3
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
32 |
1 3 5
|
subne0d |
|- ( ph -> ( A - C ) =/= 0 ) |
33 |
30 31 7 32 8
|
divcan7d |
|- ( ph -> ( ( ( B - C ) / ( A - B ) ) / ( ( A - C ) / ( A - B ) ) ) = ( ( B - C ) / ( A - C ) ) ) |
34 |
2 3 1 3 5
|
div2subd |
|- ( ph -> ( ( B - C ) / ( A - C ) ) = ( ( C - B ) / ( C - A ) ) ) |
35 |
29 33 34
|
3eqtrrd |
|- ( ph -> ( ( C - B ) / ( C - A ) ) = ( -u ( ( C - B ) / ( A - B ) ) / ( 1 + -u ( ( C - B ) / ( A - B ) ) ) ) ) |
36 |
35
|
eleq1d |
|- ( ph -> ( ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) <-> ( -u ( ( C - B ) / ( A - B ) ) / ( 1 + -u ( ( C - B ) / ( A - B ) ) ) ) e. ( 0 (,) 1 ) ) ) |
37 |
16 36
|
bitr4d |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( C - B ) / ( C - A ) ) e. ( 0 (,) 1 ) ) ) |