Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvd.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
angpieqvd.A |
|- ( ph -> A e. CC ) |
3 |
|
angpieqvd.B |
|- ( ph -> B e. CC ) |
4 |
|
angpieqvd.C |
|- ( ph -> C e. CC ) |
5 |
|
angpieqvd.AneB |
|- ( ph -> A =/= B ) |
6 |
|
angpieqvd.BneC |
|- ( ph -> B =/= C ) |
7 |
4 3
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
8 |
2 3
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
9 |
2 3 5
|
subne0d |
|- ( ph -> ( A - B ) =/= 0 ) |
10 |
7 8 9
|
divcld |
|- ( ph -> ( ( C - B ) / ( A - B ) ) e. CC ) |
11 |
6
|
necomd |
|- ( ph -> C =/= B ) |
12 |
4 3 11
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
13 |
7 8 12 9
|
divne0d |
|- ( ph -> ( ( C - B ) / ( A - B ) ) =/= 0 ) |
14 |
|
lognegb |
|- ( ( ( ( C - B ) / ( A - B ) ) e. CC /\ ( ( C - B ) / ( A - B ) ) =/= 0 ) -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( Im ` ( log ` ( ( C - B ) / ( A - B ) ) ) ) = _pi ) ) |
15 |
10 13 14
|
syl2anc |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( Im ` ( log ` ( ( C - B ) / ( A - B ) ) ) ) = _pi ) ) |
16 |
1 8 9 7 12
|
angvald |
|- ( ph -> ( ( A - B ) F ( C - B ) ) = ( Im ` ( log ` ( ( C - B ) / ( A - B ) ) ) ) ) |
17 |
16
|
eqeq1d |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi <-> ( Im ` ( log ` ( ( C - B ) / ( A - B ) ) ) ) = _pi ) ) |
18 |
15 17
|
bitr4d |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |