Step |
Hyp |
Ref |
Expression |
1 |
|
angpieqvd.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
angpieqvd.A |
|- ( ph -> A e. CC ) |
3 |
|
angpieqvd.B |
|- ( ph -> B e. CC ) |
4 |
|
angpieqvd.C |
|- ( ph -> C e. CC ) |
5 |
|
angpieqvd.AneB |
|- ( ph -> A =/= B ) |
6 |
|
angpieqvd.BneC |
|- ( ph -> B =/= C ) |
7 |
1 2 3 4 5 6
|
angpieqvdlem2 |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ <-> ( ( A - B ) F ( C - B ) ) = _pi ) ) |
8 |
|
1rp |
|- 1 e. RR+ |
9 |
|
1re |
|- 1 e. RR |
10 |
|
ax-1ne0 |
|- 1 =/= 0 |
11 |
|
rpneg |
|- ( ( 1 e. RR /\ 1 =/= 0 ) -> ( 1 e. RR+ <-> -. -u 1 e. RR+ ) ) |
12 |
9 10 11
|
mp2an |
|- ( 1 e. RR+ <-> -. -u 1 e. RR+ ) |
13 |
8 12
|
mpbi |
|- -. -u 1 e. RR+ |
14 |
2 3
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
15 |
14
|
adantr |
|- ( ( ph /\ C = A ) -> ( A - B ) e. CC ) |
16 |
2 3 5
|
subne0d |
|- ( ph -> ( A - B ) =/= 0 ) |
17 |
16
|
adantr |
|- ( ( ph /\ C = A ) -> ( A - B ) =/= 0 ) |
18 |
|
simpr |
|- ( ( ph /\ C = A ) -> C = A ) |
19 |
18
|
oveq1d |
|- ( ( ph /\ C = A ) -> ( C - B ) = ( A - B ) ) |
20 |
15 17 19
|
diveq1bd |
|- ( ( ph /\ C = A ) -> ( ( C - B ) / ( A - B ) ) = 1 ) |
21 |
20
|
adantlr |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> ( ( C - B ) / ( A - B ) ) = 1 ) |
22 |
21
|
negeqd |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u ( ( C - B ) / ( A - B ) ) = -u 1 ) |
23 |
|
simplr |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u ( ( C - B ) / ( A - B ) ) e. RR+ ) |
24 |
22 23
|
eqeltrrd |
|- ( ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) /\ C = A ) -> -u 1 e. RR+ ) |
25 |
24
|
ex |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> ( C = A -> -u 1 e. RR+ ) ) |
26 |
25
|
necon3bd |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> ( -. -u 1 e. RR+ -> C =/= A ) ) |
27 |
13 26
|
mpi |
|- ( ( ph /\ -u ( ( C - B ) / ( A - B ) ) e. RR+ ) -> C =/= A ) |
28 |
27
|
ex |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ -> C =/= A ) ) |
29 |
|
necom |
|- ( C =/= A <-> A =/= C ) |
30 |
28 29
|
syl6ib |
|- ( ph -> ( -u ( ( C - B ) / ( A - B ) ) e. RR+ -> A =/= C ) ) |
31 |
7 30
|
sylbird |
|- ( ph -> ( ( ( A - B ) F ( C - B ) ) = _pi -> A =/= C ) ) |