Metamath Proof Explorer


Theorem anifp

Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor . (Contributed by BJ, 30-Sep-2019)

Ref Expression
Assertion anifp
|- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) )

Proof

Step Hyp Ref Expression
1 olc
 |-  ( ps -> ( -. ph \/ ps ) )
2 olc
 |-  ( ch -> ( ph \/ ch ) )
3 1 2 anim12i
 |-  ( ( ps /\ ch ) -> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) )
4 dfifp4
 |-  ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) )
5 3 4 sylibr
 |-  ( ( ps /\ ch ) -> if- ( ph , ps , ch ) )