Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anim12dan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| anim12dan.2 | |- ( ( ph /\ th ) -> ta ) |
||
| Assertion | anim12dan | |- ( ( ph /\ ( ps /\ th ) ) -> ( ch /\ ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | anim12dan.2 | |- ( ( ph /\ th ) -> ta ) |
|
| 3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
| 4 | 2 | ex | |- ( ph -> ( th -> ta ) ) |
| 5 | 3 4 | anim12d | |- ( ph -> ( ( ps /\ th ) -> ( ch /\ ta ) ) ) |
| 6 | 5 | imp | |- ( ( ph /\ ( ps /\ th ) ) -> ( ch /\ ta ) ) |