Metamath Proof Explorer


Theorem anor

Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 3-Nov-2012)

Ref Expression
Assertion anor
|- ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ( ph /\ ps ) <-> -. -. ( ph /\ ps ) )
2 ianor
 |-  ( -. ( ph /\ ps ) <-> ( -. ph \/ -. ps ) )
3 1 2 xchbinx
 |-  ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) )