| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aomclem3.b |  |-  B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } | 
						
							| 2 |  | aomclem3.c |  |-  C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) | 
						
							| 3 |  | aomclem3.d |  |-  D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) | 
						
							| 4 |  | aomclem3.e |  |-  E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } | 
						
							| 5 |  | aomclem3.on |  |-  ( ph -> dom z e. On ) | 
						
							| 6 |  | aomclem3.su |  |-  ( ph -> dom z = suc U. dom z ) | 
						
							| 7 |  | aomclem3.we |  |-  ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) | 
						
							| 8 |  | aomclem3.a |  |-  ( ph -> A e. On ) | 
						
							| 9 |  | aomclem3.za |  |-  ( ph -> dom z C_ A ) | 
						
							| 10 |  | aomclem3.y |  |-  ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) | 
						
							| 11 |  | rneq |  |-  ( a = c -> ran a = ran c ) | 
						
							| 12 | 11 | difeq2d |  |-  ( a = c -> ( ( R1 ` dom z ) \ ran a ) = ( ( R1 ` dom z ) \ ran c ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( a = c -> ( C ` ( ( R1 ` dom z ) \ ran a ) ) = ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) | 
						
							| 14 | 13 | cbvmptv |  |-  ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) = ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) | 
						
							| 15 |  | recseq |  |-  ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) = ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) -> recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) | 
						
							| 17 | 3 16 | eqtri |  |-  D = recs ( ( c e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran c ) ) ) ) | 
						
							| 18 |  | fvexd |  |-  ( ph -> ( R1 ` dom z ) e. _V ) | 
						
							| 19 | 1 2 5 6 7 8 9 10 | aomclem2 |  |-  ( ph -> A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) ) | 
						
							| 20 |  | neeq1 |  |-  ( a = d -> ( a =/= (/) <-> d =/= (/) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( a = d -> ( C ` a ) = ( C ` d ) ) | 
						
							| 22 |  | id |  |-  ( a = d -> a = d ) | 
						
							| 23 | 21 22 | eleq12d |  |-  ( a = d -> ( ( C ` a ) e. a <-> ( C ` d ) e. d ) ) | 
						
							| 24 | 20 23 | imbi12d |  |-  ( a = d -> ( ( a =/= (/) -> ( C ` a ) e. a ) <-> ( d =/= (/) -> ( C ` d ) e. d ) ) ) | 
						
							| 25 | 24 | cbvralvw |  |-  ( A. a e. ~P ( R1 ` dom z ) ( a =/= (/) -> ( C ` a ) e. a ) <-> A. d e. ~P ( R1 ` dom z ) ( d =/= (/) -> ( C ` d ) e. d ) ) | 
						
							| 26 | 19 25 | sylib |  |-  ( ph -> A. d e. ~P ( R1 ` dom z ) ( d =/= (/) -> ( C ` d ) e. d ) ) | 
						
							| 27 | 17 18 26 4 | dnwech |  |-  ( ph -> E We ( R1 ` dom z ) ) |