Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem4.f |
|- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
2 |
|
aomclem4.on |
|- ( ph -> dom z e. On ) |
3 |
|
aomclem4.su |
|- ( ph -> dom z = U. dom z ) |
4 |
|
aomclem4.we |
|- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
5 |
|
suceq |
|- ( c = ( rank ` a ) -> suc c = suc ( rank ` a ) ) |
6 |
5
|
fveq2d |
|- ( c = ( rank ` a ) -> ( z ` suc c ) = ( z ` suc ( rank ` a ) ) ) |
7 |
|
r1fnon |
|- R1 Fn On |
8 |
|
fnfun |
|- ( R1 Fn On -> Fun R1 ) |
9 |
7 8
|
ax-mp |
|- Fun R1 |
10 |
7
|
fndmi |
|- dom R1 = On |
11 |
10
|
eqimss2i |
|- On C_ dom R1 |
12 |
9 11
|
pm3.2i |
|- ( Fun R1 /\ On C_ dom R1 ) |
13 |
|
funfvima2 |
|- ( ( Fun R1 /\ On C_ dom R1 ) -> ( dom z e. On -> ( R1 ` dom z ) e. ( R1 " On ) ) ) |
14 |
12 2 13
|
mpsyl |
|- ( ph -> ( R1 ` dom z ) e. ( R1 " On ) ) |
15 |
|
elssuni |
|- ( ( R1 ` dom z ) e. ( R1 " On ) -> ( R1 ` dom z ) C_ U. ( R1 " On ) ) |
16 |
14 15
|
syl |
|- ( ph -> ( R1 ` dom z ) C_ U. ( R1 " On ) ) |
17 |
16
|
sselda |
|- ( ( ph /\ b e. ( R1 ` dom z ) ) -> b e. U. ( R1 " On ) ) |
18 |
|
rankidb |
|- ( b e. U. ( R1 " On ) -> b e. ( R1 ` suc ( rank ` b ) ) ) |
19 |
17 18
|
syl |
|- ( ( ph /\ b e. ( R1 ` dom z ) ) -> b e. ( R1 ` suc ( rank ` b ) ) ) |
20 |
|
suceq |
|- ( ( rank ` b ) = ( rank ` a ) -> suc ( rank ` b ) = suc ( rank ` a ) ) |
21 |
20
|
fveq2d |
|- ( ( rank ` b ) = ( rank ` a ) -> ( R1 ` suc ( rank ` b ) ) = ( R1 ` suc ( rank ` a ) ) ) |
22 |
21
|
eleq2d |
|- ( ( rank ` b ) = ( rank ` a ) -> ( b e. ( R1 ` suc ( rank ` b ) ) <-> b e. ( R1 ` suc ( rank ` a ) ) ) ) |
23 |
19 22
|
syl5ibcom |
|- ( ( ph /\ b e. ( R1 ` dom z ) ) -> ( ( rank ` b ) = ( rank ` a ) -> b e. ( R1 ` suc ( rank ` a ) ) ) ) |
24 |
23
|
expimpd |
|- ( ph -> ( ( b e. ( R1 ` dom z ) /\ ( rank ` b ) = ( rank ` a ) ) -> b e. ( R1 ` suc ( rank ` a ) ) ) ) |
25 |
24
|
ss2abdv |
|- ( ph -> { b | ( b e. ( R1 ` dom z ) /\ ( rank ` b ) = ( rank ` a ) ) } C_ { b | b e. ( R1 ` suc ( rank ` a ) ) } ) |
26 |
|
df-rab |
|- { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } = { b | ( b e. ( R1 ` dom z ) /\ ( rank ` b ) = ( rank ` a ) ) } |
27 |
|
abid1 |
|- ( R1 ` suc ( rank ` a ) ) = { b | b e. ( R1 ` suc ( rank ` a ) ) } |
28 |
25 26 27
|
3sstr4g |
|- ( ph -> { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } C_ ( R1 ` suc ( rank ` a ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } C_ ( R1 ` suc ( rank ` a ) ) ) |
30 |
|
fveq2 |
|- ( b = suc ( rank ` a ) -> ( z ` b ) = ( z ` suc ( rank ` a ) ) ) |
31 |
|
fveq2 |
|- ( b = suc ( rank ` a ) -> ( R1 ` b ) = ( R1 ` suc ( rank ` a ) ) ) |
32 |
30 31
|
weeq12d |
|- ( b = suc ( rank ` a ) -> ( ( z ` b ) We ( R1 ` b ) <-> ( z ` suc ( rank ` a ) ) We ( R1 ` suc ( rank ` a ) ) ) ) |
33 |
|
fveq2 |
|- ( a = b -> ( z ` a ) = ( z ` b ) ) |
34 |
|
fveq2 |
|- ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) |
35 |
33 34
|
weeq12d |
|- ( a = b -> ( ( z ` a ) We ( R1 ` a ) <-> ( z ` b ) We ( R1 ` b ) ) ) |
36 |
35
|
cbvralvw |
|- ( A. a e. dom z ( z ` a ) We ( R1 ` a ) <-> A. b e. dom z ( z ` b ) We ( R1 ` b ) ) |
37 |
4 36
|
sylib |
|- ( ph -> A. b e. dom z ( z ` b ) We ( R1 ` b ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> A. b e. dom z ( z ` b ) We ( R1 ` b ) ) |
39 |
|
rankr1ai |
|- ( a e. ( R1 ` dom z ) -> ( rank ` a ) e. dom z ) |
40 |
39
|
adantl |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> ( rank ` a ) e. dom z ) |
41 |
|
eloni |
|- ( dom z e. On -> Ord dom z ) |
42 |
2 41
|
syl |
|- ( ph -> Ord dom z ) |
43 |
|
limsuc2 |
|- ( ( Ord dom z /\ dom z = U. dom z ) -> ( ( rank ` a ) e. dom z <-> suc ( rank ` a ) e. dom z ) ) |
44 |
42 3 43
|
syl2anc |
|- ( ph -> ( ( rank ` a ) e. dom z <-> suc ( rank ` a ) e. dom z ) ) |
45 |
44
|
adantr |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> ( ( rank ` a ) e. dom z <-> suc ( rank ` a ) e. dom z ) ) |
46 |
40 45
|
mpbid |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> suc ( rank ` a ) e. dom z ) |
47 |
32 38 46
|
rspcdva |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> ( z ` suc ( rank ` a ) ) We ( R1 ` suc ( rank ` a ) ) ) |
48 |
|
wess |
|- ( { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } C_ ( R1 ` suc ( rank ` a ) ) -> ( ( z ` suc ( rank ` a ) ) We ( R1 ` suc ( rank ` a ) ) -> ( z ` suc ( rank ` a ) ) We { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } ) ) |
49 |
29 47 48
|
sylc |
|- ( ( ph /\ a e. ( R1 ` dom z ) ) -> ( z ` suc ( rank ` a ) ) We { b e. ( R1 ` dom z ) | ( rank ` b ) = ( rank ` a ) } ) |
50 |
|
rankf |
|- rank : U. ( R1 " On ) --> On |
51 |
50
|
a1i |
|- ( ph -> rank : U. ( R1 " On ) --> On ) |
52 |
51 16
|
fssresd |
|- ( ph -> ( rank |` ( R1 ` dom z ) ) : ( R1 ` dom z ) --> On ) |
53 |
|
epweon |
|- _E We On |
54 |
53
|
a1i |
|- ( ph -> _E We On ) |
55 |
6 1 49 52 54
|
fnwe2 |
|- ( ph -> F We ( R1 ` dom z ) ) |