Step |
Hyp |
Ref |
Expression |
1 |
|
elpqn |
|- ( A e. Q. -> A e. ( N. X. N. ) ) |
2 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
3 |
1 2
|
syl |
|- ( A e. Q. -> ( 1st ` A ) e. N. ) |
4 |
|
1pi |
|- 1o e. N. |
5 |
|
addclpi |
|- ( ( ( 1st ` A ) e. N. /\ 1o e. N. ) -> ( ( 1st ` A ) +N 1o ) e. N. ) |
6 |
3 4 5
|
sylancl |
|- ( A e. Q. -> ( ( 1st ` A ) +N 1o ) e. N. ) |
7 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
8 |
1 7
|
syl |
|- ( A e. Q. -> ( 2nd ` A ) e. N. ) |
9 |
|
mulclpi |
|- ( ( ( ( 1st ` A ) +N 1o ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. ) |
10 |
6 8 9
|
syl2anc |
|- ( A e. Q. -> ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. ) |
11 |
|
eqid |
|- ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) |
12 |
|
oveq2 |
|- ( x = 1o -> ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) ) |
13 |
12
|
eqeq1d |
|- ( x = 1o -> ( ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) <-> ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) ) ) |
14 |
13
|
rspcev |
|- ( ( 1o e. N. /\ ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) ) -> E. x e. N. ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) ) |
15 |
4 11 14
|
mp2an |
|- E. x e. N. ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) |
16 |
|
ltexpi |
|- ( ( ( 1st ` A ) e. N. /\ ( ( 1st ` A ) +N 1o ) e. N. ) -> ( ( 1st ` A ) E. x e. N. ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) ) ) |
17 |
15 16
|
mpbiri |
|- ( ( ( 1st ` A ) e. N. /\ ( ( 1st ` A ) +N 1o ) e. N. ) -> ( 1st ` A ) |
18 |
3 6 17
|
syl2anc |
|- ( A e. Q. -> ( 1st ` A ) |
19 |
|
nlt1pi |
|- -. ( 2nd ` A ) |
20 |
|
ltmpi |
|- ( ( ( 1st ` A ) +N 1o ) e. N. -> ( ( 2nd ` A ) ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
21 |
6 20
|
syl |
|- ( A e. Q. -> ( ( 2nd ` A ) ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
22 |
|
mulidpi |
|- ( ( ( 1st ` A ) +N 1o ) e. N. -> ( ( ( 1st ` A ) +N 1o ) .N 1o ) = ( ( 1st ` A ) +N 1o ) ) |
23 |
6 22
|
syl |
|- ( A e. Q. -> ( ( ( 1st ` A ) +N 1o ) .N 1o ) = ( ( 1st ` A ) +N 1o ) ) |
24 |
23
|
breq2d |
|- ( A e. Q. -> ( ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
25 |
21 24
|
bitrd |
|- ( A e. Q. -> ( ( 2nd ` A ) ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
26 |
19 25
|
mtbii |
|- ( A e. Q. -> -. ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
27 |
|
ltsopi |
|- |
28 |
|
ltrelpi |
|- |
29 |
27 28
|
sotri3 |
|- ( ( ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. /\ ( 1st ` A ) ( 1st ` A ) |
30 |
10 18 26 29
|
syl3anc |
|- ( A e. Q. -> ( 1st ` A ) |
31 |
|
pinq |
|- ( ( ( 1st ` A ) +N 1o ) e. N. -> <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) |
32 |
6 31
|
syl |
|- ( A e. Q. -> <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) |
33 |
|
ordpinq |
|- ( ( A e. Q. /\ <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) -> ( A . <-> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) . ) .N ( 2nd ` A ) ) ) ) |
34 |
32 33
|
mpdan |
|- ( A e. Q. -> ( A . <-> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) . ) .N ( 2nd ` A ) ) ) ) |
35 |
|
ovex |
|- ( ( 1st ` A ) +N 1o ) e. _V |
36 |
|
1oex |
|- 1o e. _V |
37 |
35 36
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) = 1o |
38 |
37
|
oveq2i |
|- ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) = ( ( 1st ` A ) .N 1o ) |
39 |
|
mulidpi |
|- ( ( 1st ` A ) e. N. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
40 |
3 39
|
syl |
|- ( A e. Q. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
41 |
38 40
|
eqtrid |
|- ( A e. Q. -> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) = ( 1st ` A ) ) |
42 |
35 36
|
op1st |
|- ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) = ( ( 1st ` A ) +N 1o ) |
43 |
42
|
oveq1i |
|- ( ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) .N ( 2nd ` A ) ) = ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
44 |
43
|
a1i |
|- ( A e. Q. -> ( ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) .N ( 2nd ` A ) ) = ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) ) |
45 |
41 44
|
breq12d |
|- ( A e. Q. -> ( ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) . ) .N ( 2nd ` A ) ) <-> ( 1st ` A ) |
46 |
34 45
|
bitrd |
|- ( A e. Q. -> ( A . <-> ( 1st ` A ) |
47 |
30 46
|
mpbird |
|- ( A e. Q. -> A . ) |
48 |
|
opeq1 |
|- ( x = ( ( 1st ` A ) +N 1o ) -> <. x , 1o >. = <. ( ( 1st ` A ) +N 1o ) , 1o >. ) |
49 |
48
|
breq2d |
|- ( x = ( ( 1st ` A ) +N 1o ) -> ( A . <-> A . ) ) |
50 |
49
|
rspcev |
|- ( ( ( ( 1st ` A ) +N 1o ) e. N. /\ A . ) -> E. x e. N. A . ) |
51 |
6 47 50
|
syl2anc |
|- ( A e. Q. -> E. x e. N. A . ) |