Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
3 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
4 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
5 |
4
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
6 |
5
|
adantl |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> k e. CC ) |
7 |
|
id |
|- ( k = ( j + 1 ) -> k = ( j + 1 ) ) |
8 |
2 2 3 6 7
|
fsumshftm |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) ) |
9 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
10 |
9
|
oveq1i |
|- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
11 |
10
|
sumeq1i |
|- sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) |
12 |
8 11
|
eqtrdi |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) ) |
13 |
|
elfznn0 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
14 |
13
|
adantl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) |
15 |
|
bcnp1n |
|- ( j e. NN0 -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
16 |
14 15
|
syl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
17 |
14
|
nn0cnd |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. CC ) |
18 |
|
ax-1cn |
|- 1 e. CC |
19 |
|
addcom |
|- ( ( j e. CC /\ 1 e. CC ) -> ( j + 1 ) = ( 1 + j ) ) |
20 |
17 18 19
|
sylancl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( 1 + j ) ) |
21 |
20
|
oveq1d |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( ( 1 + j ) _C j ) ) |
22 |
16 21
|
eqtr3d |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( ( 1 + j ) _C j ) ) |
23 |
22
|
sumeq2dv |
|- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
24 |
|
1nn0 |
|- 1 e. NN0 |
25 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
26 |
|
bcxmas |
|- ( ( 1 e. NN0 /\ ( N - 1 ) e. NN0 ) -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
27 |
24 25 26
|
sylancr |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
28 |
23 27
|
eqtr4d |
|- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) ) |
29 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
30 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
31 |
29 29 30
|
ppncand |
|- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( 1 + N ) ) |
32 |
29 30 31
|
comraddd |
|- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( N + 1 ) ) |
33 |
32
|
oveq1d |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( N - 1 ) ) ) |
34 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
35 |
|
bcp1m1 |
|- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
36 |
34 35
|
syl |
|- ( N e. NN -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
37 |
|
sqval |
|- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
38 |
37
|
eqcomd |
|- ( N e. CC -> ( N x. N ) = ( N ^ 2 ) ) |
39 |
|
mulid2 |
|- ( N e. CC -> ( 1 x. N ) = N ) |
40 |
38 39
|
oveq12d |
|- ( N e. CC -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
41 |
30 40
|
syl |
|- ( N e. NN -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
42 |
30 30 29 41
|
joinlmuladdmuld |
|- ( N e. NN -> ( ( N + 1 ) x. N ) = ( ( N ^ 2 ) + N ) ) |
43 |
42
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) x. N ) / 2 ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
44 |
33 36 43
|
3eqtrd |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
45 |
12 28 44
|
3eqtrd |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
46 |
|
oveq2 |
|- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
47 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
48 |
46 47
|
eqtrdi |
|- ( N = 0 -> ( 1 ... N ) = (/) ) |
49 |
48
|
sumeq1d |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = sum_ k e. (/) k ) |
50 |
|
sum0 |
|- sum_ k e. (/) k = 0 |
51 |
49 50
|
eqtrdi |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = 0 ) |
52 |
|
sq0i |
|- ( N = 0 -> ( N ^ 2 ) = 0 ) |
53 |
|
id |
|- ( N = 0 -> N = 0 ) |
54 |
52 53
|
oveq12d |
|- ( N = 0 -> ( ( N ^ 2 ) + N ) = ( 0 + 0 ) ) |
55 |
|
00id |
|- ( 0 + 0 ) = 0 |
56 |
54 55
|
eqtrdi |
|- ( N = 0 -> ( ( N ^ 2 ) + N ) = 0 ) |
57 |
56
|
oveq1d |
|- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = ( 0 / 2 ) ) |
58 |
|
2cn |
|- 2 e. CC |
59 |
|
2ne0 |
|- 2 =/= 0 |
60 |
58 59
|
div0i |
|- ( 0 / 2 ) = 0 |
61 |
57 60
|
eqtrdi |
|- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = 0 ) |
62 |
51 61
|
eqtr4d |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
63 |
45 62
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
64 |
1 63
|
sylbi |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |