Metamath Proof Explorer


Theorem arwdmcd

Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a
|- A = ( Arrow ` C )
Assertion arwdmcd
|- ( F e. A -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. )

Proof

Step Hyp Ref Expression
1 arwrcl.a
 |-  A = ( Arrow ` C )
2 eqid
 |-  ( HomA ` C ) = ( HomA ` C )
3 1 2 arwhoma
 |-  ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) )
4 2 homadmcd
 |-  ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. )
5 3 4 syl
 |-  ( F e. A -> F = <. ( domA ` F ) , ( codA ` F ) , ( 2nd ` F ) >. )