Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | arwrcl.a | |- A = ( Arrow ` C ) |
|
arwhom.j | |- J = ( Hom ` C ) |
||
Assertion | arwhom | |- ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | |- A = ( Arrow ` C ) |
|
2 | arwhom.j | |- J = ( Hom ` C ) |
|
3 | eqid | |- ( HomA ` C ) = ( HomA ` C ) |
|
4 | 1 3 | arwhoma | |- ( F e. A -> F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) ) |
5 | 3 2 | homahom | |- ( F e. ( ( domA ` F ) ( HomA ` C ) ( codA ` F ) ) -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) |
6 | 4 5 | syl | |- ( F e. A -> ( 2nd ` F ) e. ( ( domA ` F ) J ( codA ` F ) ) ) |