Step |
Hyp |
Ref |
Expression |
1 |
|
arwrcl.a |
|- A = ( Arrow ` C ) |
2 |
|
arwhoma.h |
|- H = ( HomA ` C ) |
3 |
1 2
|
arwval |
|- A = U. ran H |
4 |
3
|
eleq2i |
|- ( F e. A <-> F e. U. ran H ) |
5 |
4
|
biimpi |
|- ( F e. A -> F e. U. ran H ) |
6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
7 |
1
|
arwrcl |
|- ( F e. A -> C e. Cat ) |
8 |
2 6 7
|
homaf |
|- ( F e. A -> H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
9 |
|
ffn |
|- ( H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) -> H Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
10 |
|
fnunirn |
|- ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
11 |
8 9 10
|
3syl |
|- ( F e. A -> ( F e. U. ran H <-> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) ) |
12 |
5 11
|
mpbid |
|- ( F e. A -> E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) ) |
13 |
|
fveq2 |
|- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
14 |
|
df-ov |
|- ( x H y ) = ( H ` <. x , y >. ) |
15 |
13 14
|
eqtr4di |
|- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
16 |
15
|
eleq2d |
|- ( z = <. x , y >. -> ( F e. ( H ` z ) <-> F e. ( x H y ) ) ) |
17 |
16
|
rexxp |
|- ( E. z e. ( ( Base ` C ) X. ( Base ` C ) ) F e. ( H ` z ) <-> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
18 |
12 17
|
sylib |
|- ( F e. A -> E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) ) |
19 |
|
id |
|- ( F e. ( x H y ) -> F e. ( x H y ) ) |
20 |
2
|
homadm |
|- ( F e. ( x H y ) -> ( domA ` F ) = x ) |
21 |
2
|
homacd |
|- ( F e. ( x H y ) -> ( codA ` F ) = y ) |
22 |
20 21
|
oveq12d |
|- ( F e. ( x H y ) -> ( ( domA ` F ) H ( codA ` F ) ) = ( x H y ) ) |
23 |
19 22
|
eleqtrrd |
|- ( F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
24 |
23
|
rexlimivw |
|- ( E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
25 |
24
|
rexlimivw |
|- ( E. x e. ( Base ` C ) E. y e. ( Base ` C ) F e. ( x H y ) -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |
26 |
18 25
|
syl |
|- ( F e. A -> F e. ( ( domA ` F ) H ( codA ` F ) ) ) |