Metamath Proof Explorer


Theorem arwrcl

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a
|- A = ( Arrow ` C )
Assertion arwrcl
|- ( F e. A -> C e. Cat )

Proof

Step Hyp Ref Expression
1 arwrcl.a
 |-  A = ( Arrow ` C )
2 df-arw
 |-  Arrow = ( c e. Cat |-> U. ran ( HomA ` c ) )
3 2 dmmptss
 |-  dom Arrow C_ Cat
4 elfvdm
 |-  ( F e. ( Arrow ` C ) -> C e. dom Arrow )
5 4 1 eleq2s
 |-  ( F e. A -> C e. dom Arrow )
6 3 5 sselid
 |-  ( F e. A -> C e. Cat )