Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | arwrcl.a | |- A = ( Arrow ` C ) |
|
Assertion | arwrcl | |- ( F e. A -> C e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | |- A = ( Arrow ` C ) |
|
2 | df-arw | |- Arrow = ( c e. Cat |-> U. ran ( HomA ` c ) ) |
|
3 | 2 | dmmptss | |- dom Arrow C_ Cat |
4 | elfvdm | |- ( F e. ( Arrow ` C ) -> C e. dom Arrow ) |
|
5 | 4 1 | eleq2s | |- ( F e. A -> C e. dom Arrow ) |
6 | 3 5 | sselid | |- ( F e. A -> C e. Cat ) |