Step |
Hyp |
Ref |
Expression |
1 |
|
arwval.a |
|- A = ( Arrow ` C ) |
2 |
|
arwval.h |
|- H = ( HomA ` C ) |
3 |
|
fveq2 |
|- ( c = C -> ( HomA ` c ) = ( HomA ` C ) ) |
4 |
3 2
|
eqtr4di |
|- ( c = C -> ( HomA ` c ) = H ) |
5 |
4
|
rneqd |
|- ( c = C -> ran ( HomA ` c ) = ran H ) |
6 |
5
|
unieqd |
|- ( c = C -> U. ran ( HomA ` c ) = U. ran H ) |
7 |
|
df-arw |
|- Arrow = ( c e. Cat |-> U. ran ( HomA ` c ) ) |
8 |
2
|
fvexi |
|- H e. _V |
9 |
8
|
rnex |
|- ran H e. _V |
10 |
9
|
uniex |
|- U. ran H e. _V |
11 |
6 7 10
|
fvmpt |
|- ( C e. Cat -> ( Arrow ` C ) = U. ran H ) |
12 |
7
|
fvmptndm |
|- ( -. C e. Cat -> ( Arrow ` C ) = (/) ) |
13 |
|
df-homa |
|- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
14 |
13
|
fvmptndm |
|- ( -. C e. Cat -> ( HomA ` C ) = (/) ) |
15 |
2 14
|
eqtrid |
|- ( -. C e. Cat -> H = (/) ) |
16 |
15
|
rneqd |
|- ( -. C e. Cat -> ran H = ran (/) ) |
17 |
|
rn0 |
|- ran (/) = (/) |
18 |
16 17
|
eqtrdi |
|- ( -. C e. Cat -> ran H = (/) ) |
19 |
18
|
unieqd |
|- ( -. C e. Cat -> U. ran H = U. (/) ) |
20 |
|
uni0 |
|- U. (/) = (/) |
21 |
19 20
|
eqtrdi |
|- ( -. C e. Cat -> U. ran H = (/) ) |
22 |
12 21
|
eqtr4d |
|- ( -. C e. Cat -> ( Arrow ` C ) = U. ran H ) |
23 |
11 22
|
pm2.61i |
|- ( Arrow ` C ) = U. ran H |
24 |
1 23
|
eqtri |
|- A = U. ran H |