| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							arwval.a | 
							 |-  A = ( Arrow ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							arwval.h | 
							 |-  H = ( HomA ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = C -> ( HomA ` c ) = ( HomA ` C ) )  | 
						
						
							| 4 | 
							
								3 2
							 | 
							eqtr4di | 
							 |-  ( c = C -> ( HomA ` c ) = H )  | 
						
						
							| 5 | 
							
								4
							 | 
							rneqd | 
							 |-  ( c = C -> ran ( HomA ` c ) = ran H )  | 
						
						
							| 6 | 
							
								5
							 | 
							unieqd | 
							 |-  ( c = C -> U. ran ( HomA ` c ) = U. ran H )  | 
						
						
							| 7 | 
							
								
							 | 
							df-arw | 
							 |-  Arrow = ( c e. Cat |-> U. ran ( HomA ` c ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							fvexi | 
							 |-  H e. _V  | 
						
						
							| 9 | 
							
								8
							 | 
							rnex | 
							 |-  ran H e. _V  | 
						
						
							| 10 | 
							
								9
							 | 
							uniex | 
							 |-  U. ran H e. _V  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							fvmpt | 
							 |-  ( C e. Cat -> ( Arrow ` C ) = U. ran H )  | 
						
						
							| 12 | 
							
								7
							 | 
							fvmptndm | 
							 |-  ( -. C e. Cat -> ( Arrow ` C ) = (/) )  | 
						
						
							| 13 | 
							
								
							 | 
							df-homa | 
							 |-  HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) | 
						
						
							| 14 | 
							
								13
							 | 
							fvmptndm | 
							 |-  ( -. C e. Cat -> ( HomA ` C ) = (/) )  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqtrid | 
							 |-  ( -. C e. Cat -> H = (/) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rneqd | 
							 |-  ( -. C e. Cat -> ran H = ran (/) )  | 
						
						
							| 17 | 
							
								
							 | 
							rn0 | 
							 |-  ran (/) = (/)  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							 |-  ( -. C e. Cat -> ran H = (/) )  | 
						
						
							| 19 | 
							
								18
							 | 
							unieqd | 
							 |-  ( -. C e. Cat -> U. ran H = U. (/) )  | 
						
						
							| 20 | 
							
								
							 | 
							uni0 | 
							 |-  U. (/) = (/)  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtrdi | 
							 |-  ( -. C e. Cat -> U. ran H = (/) )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							eqtr4d | 
							 |-  ( -. C e. Cat -> ( Arrow ` C ) = U. ran H )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							pm2.61i | 
							 |-  ( Arrow ` C ) = U. ran H  | 
						
						
							| 24 | 
							
								1 23
							 | 
							eqtri | 
							 |-  A = U. ran H  |