| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ascl0.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | ascl0.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | ascl0.l |  |-  ( ph -> W e. LMod ) | 
						
							| 4 |  | ascl0.r |  |-  ( ph -> W e. Ring ) | 
						
							| 5 | 2 | lmodfgrp |  |-  ( W e. LMod -> F e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 8 | 6 7 | grpidcl |  |-  ( F e. Grp -> ( 0g ` F ) e. ( Base ` F ) ) | 
						
							| 9 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 11 | 1 2 6 9 10 | asclval |  |-  ( ( 0g ` F ) e. ( Base ` F ) -> ( A ` ( 0g ` F ) ) = ( ( 0g ` F ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 12 | 3 5 8 11 | 4syl |  |-  ( ph -> ( A ` ( 0g ` F ) ) = ( ( 0g ` F ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 14 | 13 10 | ringidcl |  |-  ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 17 | 13 2 9 7 16 | lmod0vs |  |-  ( ( W e. LMod /\ ( 1r ` W ) e. ( Base ` W ) ) -> ( ( 0g ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 0g ` W ) ) | 
						
							| 18 | 3 15 17 | syl2anc |  |-  ( ph -> ( ( 0g ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 0g ` W ) ) | 
						
							| 19 | 12 18 | eqtrd |  |-  ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) ) |