Step |
Hyp |
Ref |
Expression |
1 |
|
ascl0.a |
|- A = ( algSc ` W ) |
2 |
|
ascl0.f |
|- F = ( Scalar ` W ) |
3 |
|
ascl0.l |
|- ( ph -> W e. LMod ) |
4 |
|
ascl0.r |
|- ( ph -> W e. Ring ) |
5 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
6 |
3 5
|
syl |
|- ( ph -> F e. Ring ) |
7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
8 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
9 |
7 8
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) |
10 |
6 9
|
syl |
|- ( ph -> ( 1r ` F ) e. ( Base ` F ) ) |
11 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
12 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
13 |
1 2 7 11 12
|
asclval |
|- ( ( 1r ` F ) e. ( Base ` F ) -> ( A ` ( 1r ` F ) ) = ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) ) |
14 |
10 13
|
syl |
|- ( ph -> ( A ` ( 1r ` F ) ) = ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) ) |
15 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
16 |
15 12
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
17 |
4 16
|
syl |
|- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
18 |
15 2 11 8
|
lmodvs1 |
|- ( ( W e. LMod /\ ( 1r ` W ) e. ( Base ` W ) ) -> ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 1r ` W ) ) |
19 |
3 17 18
|
syl2anc |
|- ( ph -> ( ( 1r ` F ) ( .s ` W ) ( 1r ` W ) ) = ( 1r ` W ) ) |
20 |
14 19
|
eqtrd |
|- ( ph -> ( A ` ( 1r ` F ) ) = ( 1r ` W ) ) |