| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ascldimul.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | ascldimul.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | ascldimul.k |  |-  K = ( Base ` F ) | 
						
							| 4 |  | ascldimul.t |  |-  .X. = ( .r ` W ) | 
						
							| 5 |  | ascldimul.s |  |-  .x. = ( .r ` F ) | 
						
							| 6 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. LMod ) | 
						
							| 8 |  | simp2 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> R e. K ) | 
						
							| 9 |  | simp3 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> S e. K ) | 
						
							| 10 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. Ring ) | 
						
							| 12 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 13 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 14 | 12 13 | ringidcl |  |-  ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 15 | 11 14 | syl |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 17 | 12 2 16 3 5 | lmodvsass |  |-  ( ( W e. LMod /\ ( R e. K /\ S e. K /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 18 | 7 8 9 15 17 | syl13anc |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 19 | 2 | lmodring |  |-  ( W e. LMod -> F e. Ring ) | 
						
							| 20 | 6 19 | syl |  |-  ( W e. AssAlg -> F e. Ring ) | 
						
							| 21 | 3 5 | ringcl |  |-  ( ( F e. Ring /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) | 
						
							| 22 | 20 21 | syl3an1 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) | 
						
							| 23 | 1 2 3 16 13 | asclval |  |-  ( ( R .x. S ) e. K -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 25 | 1 2 10 6 3 12 | asclf |  |-  ( W e. AssAlg -> A : K --> ( Base ` W ) ) | 
						
							| 26 | 25 | ffvelcdmda |  |-  ( ( W e. AssAlg /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) | 
						
							| 27 | 26 | 3adant2 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) | 
						
							| 28 | 1 2 3 12 4 16 | asclmul1 |  |-  ( ( W e. AssAlg /\ R e. K /\ ( A ` S ) e. ( Base ` W ) ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) | 
						
							| 29 | 27 28 | syld3an3 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) | 
						
							| 30 | 1 2 3 16 13 | asclval |  |-  ( S e. K -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R ( .s ` W ) ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 34 | 18 24 33 | 3eqtr4d |  |-  ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( A ` R ) .X. ( A ` S ) ) ) |