Step |
Hyp |
Ref |
Expression |
1 |
|
ascldimul.a |
|- A = ( algSc ` W ) |
2 |
|
ascldimul.f |
|- F = ( Scalar ` W ) |
3 |
|
ascldimul.k |
|- K = ( Base ` F ) |
4 |
|
ascldimul.t |
|- .X. = ( .r ` W ) |
5 |
|
ascldimul.s |
|- .x. = ( .r ` F ) |
6 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
7 |
6
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. LMod ) |
8 |
|
simp2 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> R e. K ) |
9 |
|
simp3 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> S e. K ) |
10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
11 |
10
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> W e. Ring ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
14 |
12 13
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
15 |
11 14
|
syl |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) |
16 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
17 |
12 2 16 3 5
|
lmodvsass |
|- ( ( W e. LMod /\ ( R e. K /\ S e. K /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
18 |
7 8 9 15 17
|
syl13anc |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
19 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
20 |
6 19
|
syl |
|- ( W e. AssAlg -> F e. Ring ) |
21 |
3 5
|
ringcl |
|- ( ( F e. Ring /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) |
22 |
20 21
|
syl3an1 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R .x. S ) e. K ) |
23 |
1 2 3 16 13
|
asclval |
|- ( ( R .x. S ) e. K -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) |
24 |
22 23
|
syl |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( R .x. S ) ( .s ` W ) ( 1r ` W ) ) ) |
25 |
1 2 10 6 3 12
|
asclf |
|- ( W e. AssAlg -> A : K --> ( Base ` W ) ) |
26 |
25
|
ffvelrnda |
|- ( ( W e. AssAlg /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) |
27 |
26
|
3adant2 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) e. ( Base ` W ) ) |
28 |
1 2 3 12 4 16
|
asclmul1 |
|- ( ( W e. AssAlg /\ R e. K /\ ( A ` S ) e. ( Base ` W ) ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) |
29 |
27 28
|
syld3an3 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( A ` S ) ) ) |
30 |
1 2 3 16 13
|
asclval |
|- ( S e. K -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) |
31 |
30
|
3ad2ant3 |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` S ) = ( S ( .s ` W ) ( 1r ` W ) ) ) |
32 |
31
|
oveq2d |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( R ( .s ` W ) ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
33 |
29 32
|
eqtrd |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( ( A ` R ) .X. ( A ` S ) ) = ( R ( .s ` W ) ( S ( .s ` W ) ( 1r ` W ) ) ) ) |
34 |
18 24 33
|
3eqtr4d |
|- ( ( W e. AssAlg /\ R e. K /\ S e. K ) -> ( A ` ( R .x. S ) ) = ( ( A ` R ) .X. ( A ` S ) ) ) |