Metamath Proof Explorer


Theorem asclf

Description: The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a
|- A = ( algSc ` W )
asclf.f
|- F = ( Scalar ` W )
asclf.r
|- ( ph -> W e. Ring )
asclf.l
|- ( ph -> W e. LMod )
asclf.k
|- K = ( Base ` F )
asclf.b
|- B = ( Base ` W )
Assertion asclf
|- ( ph -> A : K --> B )

Proof

Step Hyp Ref Expression
1 asclf.a
 |-  A = ( algSc ` W )
2 asclf.f
 |-  F = ( Scalar ` W )
3 asclf.r
 |-  ( ph -> W e. Ring )
4 asclf.l
 |-  ( ph -> W e. LMod )
5 asclf.k
 |-  K = ( Base ` F )
6 asclf.b
 |-  B = ( Base ` W )
7 4 adantr
 |-  ( ( ph /\ x e. K ) -> W e. LMod )
8 simpr
 |-  ( ( ph /\ x e. K ) -> x e. K )
9 eqid
 |-  ( 1r ` W ) = ( 1r ` W )
10 6 9 ringidcl
 |-  ( W e. Ring -> ( 1r ` W ) e. B )
11 3 10 syl
 |-  ( ph -> ( 1r ` W ) e. B )
12 11 adantr
 |-  ( ( ph /\ x e. K ) -> ( 1r ` W ) e. B )
13 eqid
 |-  ( .s ` W ) = ( .s ` W )
14 6 2 13 5 lmodvscl
 |-  ( ( W e. LMod /\ x e. K /\ ( 1r ` W ) e. B ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B )
15 7 8 12 14 syl3anc
 |-  ( ( ph /\ x e. K ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B )
16 1 2 5 13 9 asclfval
 |-  A = ( x e. K |-> ( x ( .s ` W ) ( 1r ` W ) ) )
17 15 16 fmptd
 |-  ( ph -> A : K --> B )