Step |
Hyp |
Ref |
Expression |
1 |
|
asclf.a |
|- A = ( algSc ` W ) |
2 |
|
asclf.f |
|- F = ( Scalar ` W ) |
3 |
|
asclf.r |
|- ( ph -> W e. Ring ) |
4 |
|
asclf.l |
|- ( ph -> W e. LMod ) |
5 |
|
asclf.k |
|- K = ( Base ` F ) |
6 |
|
asclf.b |
|- B = ( Base ` W ) |
7 |
4
|
adantr |
|- ( ( ph /\ x e. K ) -> W e. LMod ) |
8 |
|
simpr |
|- ( ( ph /\ x e. K ) -> x e. K ) |
9 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
10 |
6 9
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. B ) |
11 |
3 10
|
syl |
|- ( ph -> ( 1r ` W ) e. B ) |
12 |
11
|
adantr |
|- ( ( ph /\ x e. K ) -> ( 1r ` W ) e. B ) |
13 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
14 |
6 2 13 5
|
lmodvscl |
|- ( ( W e. LMod /\ x e. K /\ ( 1r ` W ) e. B ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B ) |
15 |
7 8 12 14
|
syl3anc |
|- ( ( ph /\ x e. K ) -> ( x ( .s ` W ) ( 1r ` W ) ) e. B ) |
16 |
1 2 5 13 9
|
asclfval |
|- A = ( x e. K |-> ( x ( .s ` W ) ( 1r ` W ) ) ) |
17 |
15 16
|
fmptd |
|- ( ph -> A : K --> B ) |