Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclfn.a | |- A = ( algSc ` W ) |
|
asclfn.f | |- F = ( Scalar ` W ) |
||
asclfn.k | |- K = ( Base ` F ) |
||
Assertion | asclfn | |- A Fn K |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfn.a | |- A = ( algSc ` W ) |
|
2 | asclfn.f | |- F = ( Scalar ` W ) |
|
3 | asclfn.k | |- K = ( Base ` F ) |
|
4 | ovex | |- ( x ( .s ` W ) ( 1r ` W ) ) e. _V |
|
5 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
6 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
7 | 1 2 3 5 6 | asclfval | |- A = ( x e. K |-> ( x ( .s ` W ) ( 1r ` W ) ) ) |
8 | 4 7 | fnmpti | |- A Fn K |