Step |
Hyp |
Ref |
Expression |
1 |
|
asclfval.a |
|- A = ( algSc ` W ) |
2 |
|
asclfval.f |
|- F = ( Scalar ` W ) |
3 |
|
asclfval.k |
|- K = ( Base ` F ) |
4 |
|
asclfval.s |
|- .x. = ( .s ` W ) |
5 |
|
asclfval.o |
|- .1. = ( 1r ` W ) |
6 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
7 |
6 2
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
8 |
7
|
fveq2d |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) |
9 |
8 3
|
eqtr4di |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) |
10 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
11 |
10 4
|
eqtr4di |
|- ( w = W -> ( .s ` w ) = .x. ) |
12 |
|
eqidd |
|- ( w = W -> x = x ) |
13 |
|
fveq2 |
|- ( w = W -> ( 1r ` w ) = ( 1r ` W ) ) |
14 |
13 5
|
eqtr4di |
|- ( w = W -> ( 1r ` w ) = .1. ) |
15 |
11 12 14
|
oveq123d |
|- ( w = W -> ( x ( .s ` w ) ( 1r ` w ) ) = ( x .x. .1. ) ) |
16 |
9 15
|
mpteq12dv |
|- ( w = W -> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) = ( x e. K |-> ( x .x. .1. ) ) ) |
17 |
|
df-ascl |
|- algSc = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) ) |
18 |
16 17 3
|
mptfvmpt |
|- ( W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) |
19 |
|
fvprc |
|- ( -. W e. _V -> ( algSc ` W ) = (/) ) |
20 |
|
mpt0 |
|- ( x e. (/) |-> ( x .x. .1. ) ) = (/) |
21 |
19 20
|
eqtr4di |
|- ( -. W e. _V -> ( algSc ` W ) = ( x e. (/) |-> ( x .x. .1. ) ) ) |
22 |
|
fvprc |
|- ( -. W e. _V -> ( Scalar ` W ) = (/) ) |
23 |
2 22
|
eqtrid |
|- ( -. W e. _V -> F = (/) ) |
24 |
23
|
fveq2d |
|- ( -. W e. _V -> ( Base ` F ) = ( Base ` (/) ) ) |
25 |
|
base0 |
|- (/) = ( Base ` (/) ) |
26 |
24 25
|
eqtr4di |
|- ( -. W e. _V -> ( Base ` F ) = (/) ) |
27 |
3 26
|
eqtrid |
|- ( -. W e. _V -> K = (/) ) |
28 |
27
|
mpteq1d |
|- ( -. W e. _V -> ( x e. K |-> ( x .x. .1. ) ) = ( x e. (/) |-> ( x .x. .1. ) ) ) |
29 |
21 28
|
eqtr4d |
|- ( -. W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) |
30 |
18 29
|
pm2.61i |
|- ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) |
31 |
1 30
|
eqtri |
|- A = ( x e. K |-> ( x .x. .1. ) ) |