| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclfval.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | asclfval.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | asclfval.k |  |-  K = ( Base ` F ) | 
						
							| 4 |  | asclfval.s |  |-  .x. = ( .s ` W ) | 
						
							| 5 |  | asclfval.o |  |-  .1. = ( 1r ` W ) | 
						
							| 6 |  | fveq2 |  |-  ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( w = W -> ( Scalar ` w ) = F ) | 
						
							| 8 | 7 | fveq2d |  |-  ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) | 
						
							| 9 | 8 3 | eqtr4di |  |-  ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) | 
						
							| 10 |  | fveq2 |  |-  ( w = W -> ( .s ` w ) = ( .s ` W ) ) | 
						
							| 11 | 10 4 | eqtr4di |  |-  ( w = W -> ( .s ` w ) = .x. ) | 
						
							| 12 |  | eqidd |  |-  ( w = W -> x = x ) | 
						
							| 13 |  | fveq2 |  |-  ( w = W -> ( 1r ` w ) = ( 1r ` W ) ) | 
						
							| 14 | 13 5 | eqtr4di |  |-  ( w = W -> ( 1r ` w ) = .1. ) | 
						
							| 15 | 11 12 14 | oveq123d |  |-  ( w = W -> ( x ( .s ` w ) ( 1r ` w ) ) = ( x .x. .1. ) ) | 
						
							| 16 | 9 15 | mpteq12dv |  |-  ( w = W -> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) = ( x e. K |-> ( x .x. .1. ) ) ) | 
						
							| 17 |  | df-ascl |  |-  algSc = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) ) | 
						
							| 18 | 16 17 3 | mptfvmpt |  |-  ( W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) | 
						
							| 19 |  | fvprc |  |-  ( -. W e. _V -> ( algSc ` W ) = (/) ) | 
						
							| 20 |  | mpt0 |  |-  ( x e. (/) |-> ( x .x. .1. ) ) = (/) | 
						
							| 21 | 19 20 | eqtr4di |  |-  ( -. W e. _V -> ( algSc ` W ) = ( x e. (/) |-> ( x .x. .1. ) ) ) | 
						
							| 22 |  | fvprc |  |-  ( -. W e. _V -> ( Scalar ` W ) = (/) ) | 
						
							| 23 | 2 22 | eqtrid |  |-  ( -. W e. _V -> F = (/) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( -. W e. _V -> ( Base ` F ) = ( Base ` (/) ) ) | 
						
							| 25 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 26 | 24 25 | eqtr4di |  |-  ( -. W e. _V -> ( Base ` F ) = (/) ) | 
						
							| 27 | 3 26 | eqtrid |  |-  ( -. W e. _V -> K = (/) ) | 
						
							| 28 | 27 | mpteq1d |  |-  ( -. W e. _V -> ( x e. K |-> ( x .x. .1. ) ) = ( x e. (/) |-> ( x .x. .1. ) ) ) | 
						
							| 29 | 21 28 | eqtr4d |  |-  ( -. W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) | 
						
							| 30 | 18 29 | pm2.61i |  |-  ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) | 
						
							| 31 | 1 30 | eqtri |  |-  A = ( x e. K |-> ( x .x. .1. ) ) |