| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclf.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | asclf.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | asclf.r |  |-  ( ph -> W e. Ring ) | 
						
							| 4 |  | asclf.l |  |-  ( ph -> W e. LMod ) | 
						
							| 5 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 6 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 7 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 8 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 9 | 2 | lmodring |  |-  ( W e. LMod -> F e. Ring ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> F e. Ring ) | 
						
							| 11 |  | ringgrp |  |-  ( F e. Ring -> F e. Grp ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> F e. Grp ) | 
						
							| 13 |  | ringgrp |  |-  ( W e. Ring -> W e. Grp ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> W e. Grp ) | 
						
							| 15 | 1 2 3 4 5 6 | asclf |  |-  ( ph -> A : ( Base ` F ) --> ( Base ` W ) ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> W e. LMod ) | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> x e. ( Base ` F ) ) | 
						
							| 18 |  | simprr |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> y e. ( Base ` F ) ) | 
						
							| 19 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 20 | 6 19 | ringidcl |  |-  ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 21 | 3 20 | syl |  |-  ( ph -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( 1r ` W ) e. ( Base ` W ) ) | 
						
							| 23 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 24 | 6 8 2 23 5 7 | lmodvsdir |  |-  ( ( W e. LMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 25 | 16 17 18 22 24 | syl13anc |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 26 | 5 7 | grpcl |  |-  ( ( F e. Grp /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) | 
						
							| 27 | 26 | 3expb |  |-  ( ( F e. Grp /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) | 
						
							| 28 | 12 27 | sylan |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) | 
						
							| 29 | 1 2 5 23 19 | asclval |  |-  ( ( x ( +g ` F ) y ) e. ( Base ` F ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 31 | 1 2 5 23 19 | asclval |  |-  ( x e. ( Base ` F ) -> ( A ` x ) = ( x ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 32 | 1 2 5 23 19 | asclval |  |-  ( y e. ( Base ` F ) -> ( A ` y ) = ( y ( .s ` W ) ( 1r ` W ) ) ) | 
						
							| 33 | 31 32 | oveqan12d |  |-  ( ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) | 
						
							| 35 | 25 30 34 | 3eqtr4d |  |-  ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( A ` x ) ( +g ` W ) ( A ` y ) ) ) | 
						
							| 36 | 5 6 7 8 12 14 15 35 | isghmd |  |-  ( ph -> A e. ( F GrpHom W ) ) |