Step |
Hyp |
Ref |
Expression |
1 |
|
asclf.a |
|- A = ( algSc ` W ) |
2 |
|
asclf.f |
|- F = ( Scalar ` W ) |
3 |
|
asclf.r |
|- ( ph -> W e. Ring ) |
4 |
|
asclf.l |
|- ( ph -> W e. LMod ) |
5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
8 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
9 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
10 |
4 9
|
syl |
|- ( ph -> F e. Ring ) |
11 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
12 |
10 11
|
syl |
|- ( ph -> F e. Grp ) |
13 |
|
ringgrp |
|- ( W e. Ring -> W e. Grp ) |
14 |
3 13
|
syl |
|- ( ph -> W e. Grp ) |
15 |
1 2 3 4 5 6
|
asclf |
|- ( ph -> A : ( Base ` F ) --> ( Base ` W ) ) |
16 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> W e. LMod ) |
17 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> x e. ( Base ` F ) ) |
18 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> y e. ( Base ` F ) ) |
19 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
20 |
6 19
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
21 |
3 20
|
syl |
|- ( ph -> ( 1r ` W ) e. ( Base ` W ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( 1r ` W ) e. ( Base ` W ) ) |
23 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
24 |
6 8 2 23 5 7
|
lmodvsdir |
|- ( ( W e. LMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
25 |
16 17 18 22 24
|
syl13anc |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
26 |
5 7
|
grpcl |
|- ( ( F e. Grp /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
27 |
26
|
3expb |
|- ( ( F e. Grp /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
28 |
12 27
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( x ( +g ` F ) y ) e. ( Base ` F ) ) |
29 |
1 2 5 23 19
|
asclval |
|- ( ( x ( +g ` F ) y ) e. ( Base ` F ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
30 |
28 29
|
syl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( x ( +g ` F ) y ) ( .s ` W ) ( 1r ` W ) ) ) |
31 |
1 2 5 23 19
|
asclval |
|- ( x e. ( Base ` F ) -> ( A ` x ) = ( x ( .s ` W ) ( 1r ` W ) ) ) |
32 |
1 2 5 23 19
|
asclval |
|- ( y e. ( Base ` F ) -> ( A ` y ) = ( y ( .s ` W ) ( 1r ` W ) ) ) |
33 |
31 32
|
oveqan12d |
|- ( ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( ( A ` x ) ( +g ` W ) ( A ` y ) ) = ( ( x ( .s ` W ) ( 1r ` W ) ) ( +g ` W ) ( y ( .s ` W ) ( 1r ` W ) ) ) ) |
35 |
25 30 34
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( +g ` F ) y ) ) = ( ( A ` x ) ( +g ` W ) ( A ` y ) ) ) |
36 |
5 6 7 8 12 14 15 35
|
isghmd |
|- ( ph -> A e. ( F GrpHom W ) ) |