| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclmul1.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | asclmul1.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | asclmul1.k |  |-  K = ( Base ` F ) | 
						
							| 4 |  | asclmul1.v |  |-  V = ( Base ` W ) | 
						
							| 5 |  | asclmul1.t |  |-  .X. = ( .r ` W ) | 
						
							| 6 |  | asclmul1.s |  |-  .x. = ( .s ` W ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 8 | 1 2 3 6 7 | asclval |  |-  ( R e. K -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( ( R .x. ( 1r ` W ) ) .X. X ) ) | 
						
							| 11 |  | simp1 |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. AssAlg ) | 
						
							| 12 |  | simp2 |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> R e. K ) | 
						
							| 13 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. Ring ) | 
						
							| 15 | 4 7 | ringidcl |  |-  ( W e. Ring -> ( 1r ` W ) e. V ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( 1r ` W ) e. V ) | 
						
							| 17 |  | simp3 |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> X e. V ) | 
						
							| 18 | 4 2 3 6 5 | assaass |  |-  ( ( W e. AssAlg /\ ( R e. K /\ ( 1r ` W ) e. V /\ X e. V ) ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) | 
						
							| 19 | 11 12 16 17 18 | syl13anc |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) | 
						
							| 20 | 4 5 7 | ringlidm |  |-  ( ( W e. Ring /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) | 
						
							| 21 | 14 17 20 | syl2anc |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( R .x. ( ( 1r ` W ) .X. X ) ) = ( R .x. X ) ) | 
						
							| 23 | 10 19 22 | 3eqtrd |  |-  ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( R .x. X ) ) |