Step |
Hyp |
Ref |
Expression |
1 |
|
asclmul1.a |
|- A = ( algSc ` W ) |
2 |
|
asclmul1.f |
|- F = ( Scalar ` W ) |
3 |
|
asclmul1.k |
|- K = ( Base ` F ) |
4 |
|
asclmul1.v |
|- V = ( Base ` W ) |
5 |
|
asclmul1.t |
|- .X. = ( .r ` W ) |
6 |
|
asclmul1.s |
|- .x. = ( .s ` W ) |
7 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
8 |
1 2 3 6 7
|
asclval |
|- ( R e. K -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( A ` R ) = ( R .x. ( 1r ` W ) ) ) |
10 |
9
|
oveq1d |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( ( R .x. ( 1r ` W ) ) .X. X ) ) |
11 |
|
simp1 |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. AssAlg ) |
12 |
|
simp2 |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> R e. K ) |
13 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
14 |
13
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> W e. Ring ) |
15 |
4 7
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. V ) |
16 |
14 15
|
syl |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( 1r ` W ) e. V ) |
17 |
|
simp3 |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> X e. V ) |
18 |
4 2 3 6 5
|
assaass |
|- ( ( W e. AssAlg /\ ( R e. K /\ ( 1r ` W ) e. V /\ X e. V ) ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) |
19 |
11 12 16 17 18
|
syl13anc |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( R .x. ( 1r ` W ) ) .X. X ) = ( R .x. ( ( 1r ` W ) .X. X ) ) ) |
20 |
4 5 7
|
ringlidm |
|- ( ( W e. Ring /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) |
21 |
14 17 20
|
syl2anc |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( 1r ` W ) .X. X ) = X ) |
22 |
21
|
oveq2d |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( R .x. ( ( 1r ` W ) .X. X ) ) = ( R .x. X ) ) |
23 |
10 19 22
|
3eqtrd |
|- ( ( W e. AssAlg /\ R e. K /\ X e. V ) -> ( ( A ` R ) .X. X ) = ( R .x. X ) ) |