| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclpropd.f |
|- F = ( Scalar ` K ) |
| 2 |
|
asclpropd.g |
|- G = ( Scalar ` L ) |
| 3 |
|
asclpropd.1 |
|- ( ph -> P = ( Base ` F ) ) |
| 4 |
|
asclpropd.2 |
|- ( ph -> P = ( Base ` G ) ) |
| 5 |
|
asclpropd.3 |
|- ( ( ph /\ ( x e. P /\ y e. W ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
| 6 |
|
asclpropd.4 |
|- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
| 7 |
|
asclpropd.5 |
|- ( ph -> ( 1r ` K ) e. W ) |
| 8 |
5
|
oveqrspc2v |
|- ( ( ph /\ ( z e. P /\ ( 1r ` K ) e. W ) ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 9 |
8
|
anassrs |
|- ( ( ( ph /\ z e. P ) /\ ( 1r ` K ) e. W ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 10 |
7 9
|
mpidan |
|- ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` K ) ) ) |
| 11 |
6
|
oveq2d |
|- ( ph -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ z e. P ) -> ( z ( .s ` L ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ( ph /\ z e. P ) -> ( z ( .s ` K ) ( 1r ` K ) ) = ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 14 |
13
|
mpteq2dva |
|- ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 15 |
3
|
mpteq1d |
|- ( ph -> ( z e. P |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) ) |
| 16 |
4
|
mpteq1d |
|- ( ph -> ( z e. P |-> ( z ( .s ` L ) ( 1r ` L ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 17 |
14 15 16
|
3eqtr3d |
|- ( ph -> ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) ) |
| 18 |
|
eqid |
|- ( algSc ` K ) = ( algSc ` K ) |
| 19 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 20 |
|
eqid |
|- ( .s ` K ) = ( .s ` K ) |
| 21 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 22 |
18 1 19 20 21
|
asclfval |
|- ( algSc ` K ) = ( z e. ( Base ` F ) |-> ( z ( .s ` K ) ( 1r ` K ) ) ) |
| 23 |
|
eqid |
|- ( algSc ` L ) = ( algSc ` L ) |
| 24 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 25 |
|
eqid |
|- ( .s ` L ) = ( .s ` L ) |
| 26 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
| 27 |
23 2 24 25 26
|
asclfval |
|- ( algSc ` L ) = ( z e. ( Base ` G ) |-> ( z ( .s ` L ) ( 1r ` L ) ) ) |
| 28 |
17 22 27
|
3eqtr4g |
|- ( ph -> ( algSc ` K ) = ( algSc ` L ) ) |