Step |
Hyp |
Ref |
Expression |
1 |
|
asclrhm.a |
|- A = ( algSc ` W ) |
2 |
|
asclrhm.f |
|- F = ( Scalar ` W ) |
3 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
4 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
5 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
6 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
7 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
8 |
2
|
assasca |
|- ( W e. AssAlg -> F e. CRing ) |
9 |
8
|
crngringd |
|- ( W e. AssAlg -> F e. Ring ) |
10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
11 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
12 |
1 2 11 10
|
ascl1 |
|- ( W e. AssAlg -> ( A ` ( 1r ` F ) ) = ( 1r ` W ) ) |
13 |
1 2 3 7 6
|
ascldimul |
|- ( ( W e. AssAlg /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( A ` ( x ( .r ` F ) y ) ) = ( ( A ` x ) ( .r ` W ) ( A ` y ) ) ) |
14 |
13
|
3expb |
|- ( ( W e. AssAlg /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( .r ` F ) y ) ) = ( ( A ` x ) ( .r ` W ) ( A ` y ) ) ) |
15 |
1 2 10 11
|
asclghm |
|- ( W e. AssAlg -> A e. ( F GrpHom W ) ) |
16 |
3 4 5 6 7 9 10 12 14 15
|
isrhm2d |
|- ( W e. AssAlg -> A e. ( F RingHom W ) ) |