| Step | Hyp | Ref | Expression | 
						
							| 1 |  | asclrhm.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | asclrhm.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 4 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 6 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 7 |  | eqid |  |-  ( .r ` W ) = ( .r ` W ) | 
						
							| 8 | 2 | assasca |  |-  ( W e. AssAlg -> F e. Ring ) | 
						
							| 9 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 10 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 11 | 1 2 10 9 | ascl1 |  |-  ( W e. AssAlg -> ( A ` ( 1r ` F ) ) = ( 1r ` W ) ) | 
						
							| 12 | 1 2 3 7 6 | ascldimul |  |-  ( ( W e. AssAlg /\ x e. ( Base ` F ) /\ y e. ( Base ` F ) ) -> ( A ` ( x ( .r ` F ) y ) ) = ( ( A ` x ) ( .r ` W ) ( A ` y ) ) ) | 
						
							| 13 | 12 | 3expb |  |-  ( ( W e. AssAlg /\ ( x e. ( Base ` F ) /\ y e. ( Base ` F ) ) ) -> ( A ` ( x ( .r ` F ) y ) ) = ( ( A ` x ) ( .r ` W ) ( A ` y ) ) ) | 
						
							| 14 | 1 2 9 10 | asclghm |  |-  ( W e. AssAlg -> A e. ( F GrpHom W ) ) | 
						
							| 15 | 3 4 5 6 7 8 9 11 13 14 | isrhm2d |  |-  ( W e. AssAlg -> A e. ( F RingHom W ) ) |