Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclfval.a | |- A = ( algSc ` W ) |
|
asclfval.f | |- F = ( Scalar ` W ) |
||
asclfval.k | |- K = ( Base ` F ) |
||
asclfval.s | |- .x. = ( .s ` W ) |
||
asclfval.o | |- .1. = ( 1r ` W ) |
||
Assertion | asclval | |- ( X e. K -> ( A ` X ) = ( X .x. .1. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | |- A = ( algSc ` W ) |
|
2 | asclfval.f | |- F = ( Scalar ` W ) |
|
3 | asclfval.k | |- K = ( Base ` F ) |
|
4 | asclfval.s | |- .x. = ( .s ` W ) |
|
5 | asclfval.o | |- .1. = ( 1r ` W ) |
|
6 | oveq1 | |- ( x = X -> ( x .x. .1. ) = ( X .x. .1. ) ) |
|
7 | 1 2 3 4 5 | asclfval | |- A = ( x e. K |-> ( x .x. .1. ) ) |
8 | ovex | |- ( X .x. .1. ) e. _V |
|
9 | 6 7 8 | fvmpt | |- ( X e. K -> ( A ` X ) = ( X .x. .1. ) ) |