| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 6 |  | subcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 8 | 7 | sqrtcld |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) | 
						
							| 9 | 3 8 | subnegd |  |-  ( A e. CC -> ( ( _i x. A ) - -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 10 | 8 | negcld |  |-  ( A e. CC -> -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) | 
						
							| 11 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 12 |  | 0cnd |  |-  ( A e. CC -> 0 e. CC ) | 
						
							| 13 |  | 1cnd |  |-  ( A e. CC -> 1 e. CC ) | 
						
							| 14 |  | subcan2 |  |-  ( ( 0 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 0 - ( A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) <-> 0 = 1 ) ) | 
						
							| 15 | 14 | necon3bid |  |-  ( ( 0 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) <-> 0 =/= 1 ) ) | 
						
							| 16 | 12 13 5 15 | syl3anc |  |-  ( A e. CC -> ( ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) <-> 0 =/= 1 ) ) | 
						
							| 17 | 11 16 | mpbiri |  |-  ( A e. CC -> ( 0 - ( A ^ 2 ) ) =/= ( 1 - ( A ^ 2 ) ) ) | 
						
							| 18 |  | sqmul |  |-  ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 19 | 1 18 | mpan |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 20 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 21 | 20 | oveq1i |  |-  ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) | 
						
							| 22 | 5 | mulm1d |  |-  ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 23 | 21 22 | eqtrid |  |-  ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 24 | 19 23 | eqtrd |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) | 
						
							| 25 |  | df-neg |  |-  -u ( A ^ 2 ) = ( 0 - ( A ^ 2 ) ) | 
						
							| 26 | 24 25 | eqtrdi |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( 0 - ( A ^ 2 ) ) ) | 
						
							| 27 |  | sqneg |  |-  ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 28 | 8 27 | syl |  |-  ( A e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 29 | 7 | sqsqrtd |  |-  ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 30 | 28 29 | eqtrd |  |-  ( A e. CC -> ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 31 | 17 26 30 | 3netr4d |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) =/= ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 32 |  | oveq1 |  |-  ( ( _i x. A ) = -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) -> ( ( _i x. A ) ^ 2 ) = ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) ) | 
						
							| 33 | 32 | necon3i |  |-  ( ( ( _i x. A ) ^ 2 ) =/= ( -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) -> ( _i x. A ) =/= -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 34 | 31 33 | syl |  |-  ( A e. CC -> ( _i x. A ) =/= -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 35 | 3 10 34 | subne0d |  |-  ( A e. CC -> ( ( _i x. A ) - -u ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) | 
						
							| 36 | 9 35 | eqnetrrd |  |-  ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |