| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 6 |  | subcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 8 | 7 | sqrtcld |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) | 
						
							| 9 | 3 8 | addcomd |  |-  ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) ) | 
						
							| 10 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 11 | 1 10 | mpan |  |-  ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 12 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 15 | 11 14 | oveq12d |  |-  ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 16 | 3 | negcld |  |-  ( A e. CC -> -u ( _i x. A ) e. CC ) | 
						
							| 17 | 16 8 | addcomd |  |-  ( A e. CC -> ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) ) | 
						
							| 18 | 8 3 | negsubd |  |-  ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) | 
						
							| 19 | 15 17 18 | 3eqtrd |  |-  ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) | 
						
							| 20 | 9 19 | oveq12d |  |-  ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) | 
						
							| 21 | 7 | sqsqrtd |  |-  ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 22 |  | sqmul |  |-  ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 23 | 1 22 | mpan |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 24 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 25 | 24 | oveq1i |  |-  ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) | 
						
							| 26 | 5 | mulm1d |  |-  ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 27 | 25 26 | eqtrid |  |-  ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) | 
						
							| 29 | 21 28 | oveq12d |  |-  ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 - ( A ^ 2 ) ) - -u ( A ^ 2 ) ) ) | 
						
							| 30 |  | subsq |  |-  ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC /\ ( _i x. A ) e. CC ) -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) | 
						
							| 31 | 8 3 30 | syl2anc |  |-  ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) | 
						
							| 32 | 7 5 | subnegd |  |-  ( A e. CC -> ( ( 1 - ( A ^ 2 ) ) - -u ( A ^ 2 ) ) = ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) ) | 
						
							| 33 | 29 31 32 | 3eqtr3d |  |-  ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) x. ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) = ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) ) | 
						
							| 34 |  | npcan |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) = 1 ) | 
						
							| 35 | 4 5 34 | sylancr |  |-  ( A e. CC -> ( ( 1 - ( A ^ 2 ) ) + ( A ^ 2 ) ) = 1 ) | 
						
							| 36 | 20 33 35 | 3eqtrd |  |-  ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) |