| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 6 |  | subcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) | 
						
							| 8 | 7 | sqrtcld |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) | 
						
							| 9 | 3 8 | addcld |  |-  ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) | 
						
							| 10 |  | asinlem |  |-  ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) | 
						
							| 11 | 9 10 | logcld |  |-  ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) | 
						
							| 12 |  | efneg |  |-  ( ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 14 |  | eflog |  |-  ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 15 | 9 10 14 | syl2anc |  |-  ( A e. CC -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( A e. CC -> ( 1 / ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) = ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 17 |  | asinlem2 |  |-  ( A e. CC -> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) | 
						
							| 18 | 4 | a1i |  |-  ( A e. CC -> 1 e. CC ) | 
						
							| 19 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 20 |  | mulcl |  |-  ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) | 
						
							| 21 | 1 19 20 | sylancr |  |-  ( A e. CC -> ( _i x. -u A ) e. CC ) | 
						
							| 22 | 19 | sqcld |  |-  ( A e. CC -> ( -u A ^ 2 ) e. CC ) | 
						
							| 23 |  | subcl |  |-  ( ( 1 e. CC /\ ( -u A ^ 2 ) e. CC ) -> ( 1 - ( -u A ^ 2 ) ) e. CC ) | 
						
							| 24 | 4 22 23 | sylancr |  |-  ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) e. CC ) | 
						
							| 25 | 24 | sqrtcld |  |-  ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) e. CC ) | 
						
							| 26 | 21 25 | addcld |  |-  ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC ) | 
						
							| 27 | 18 9 26 10 | divmuld |  |-  ( A e. CC -> ( ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) <-> ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) x. ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = 1 ) ) | 
						
							| 28 | 17 27 | mpbird |  |-  ( A e. CC -> ( 1 / ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) | 
						
							| 29 | 13 16 28 | 3eqtrd |  |-  ( A e. CC -> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) | 
						
							| 30 |  | asinlem |  |-  ( -u A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) | 
						
							| 31 | 19 30 | syl |  |-  ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 ) | 
						
							| 32 | 11 | negcld |  |-  ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) | 
						
							| 33 | 11 | imnegd |  |-  ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 34 | 11 | imcld |  |-  ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) | 
						
							| 35 | 34 | renegcld |  |-  ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) | 
						
							| 36 |  | pire |  |-  _pi e. RR | 
						
							| 37 | 36 | a1i |  |-  ( A e. CC -> _pi e. RR ) | 
						
							| 38 | 9 10 | logimcld |  |-  ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) | 
						
							| 39 | 38 | simprd |  |-  ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) | 
						
							| 40 | 9 | renegd |  |-  ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 41 |  | asinlem3 |  |-  ( A e. CC -> 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 42 | 9 | recld |  |-  ( A e. CC -> ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) | 
						
							| 43 | 42 | le0neg2d |  |-  ( A e. CC -> ( 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) ) | 
						
							| 44 | 41 43 | mpbid |  |-  ( A e. CC -> -u ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) | 
						
							| 45 | 40 44 | eqbrtrd |  |-  ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 ) | 
						
							| 46 | 9 | negcld |  |-  ( A e. CC -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) | 
						
							| 47 | 46 | recld |  |-  ( A e. CC -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR ) | 
						
							| 48 |  | 0re |  |-  0 e. RR | 
						
							| 49 |  | lenlt |  |-  ( ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. RR /\ 0 e. RR ) -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 50 | 47 48 49 | sylancl |  |-  ( A e. CC -> ( ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <_ 0 <-> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 51 | 45 50 | mpbid |  |-  ( A e. CC -> -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 52 |  | lognegb |  |-  ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) | 
						
							| 53 | 9 10 52 | syl2anc |  |-  ( A e. CC -> ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ <-> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi ) ) | 
						
							| 54 |  | rpgt0 |  |-  ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 55 |  | rpre |  |-  ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR ) | 
						
							| 56 | 55 | rered |  |-  ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) = -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 57 | 54 56 | breqtrrd |  |-  ( -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. RR+ -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 58 | 53 57 | biimtrrdi |  |-  ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = _pi -> 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 59 | 58 | necon3bd |  |-  ( A e. CC -> ( -. 0 < ( Re ` -u ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) ) | 
						
							| 60 | 51 59 | mpd |  |-  ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) =/= _pi ) | 
						
							| 61 | 60 | necomd |  |-  ( A e. CC -> _pi =/= ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 62 | 34 37 39 61 | leneltd |  |-  ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi ) | 
						
							| 63 |  | ltneg |  |-  ( ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 64 | 34 36 63 | sylancl |  |-  ( A e. CC -> ( ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) < _pi <-> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 65 | 62 64 | mpbid |  |-  ( A e. CC -> -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 66 | 38 | simpld |  |-  ( A e. CC -> -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 67 | 36 | renegcli |  |-  -u _pi e. RR | 
						
							| 68 |  | ltle |  |-  ( ( -u _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 69 | 67 34 68 | sylancr |  |-  ( A e. CC -> ( -u _pi < ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) | 
						
							| 70 | 66 69 | mpd |  |-  ( A e. CC -> -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 71 |  | lenegcon1 |  |-  ( ( _pi e. RR /\ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR ) -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) | 
						
							| 72 | 36 34 71 | sylancr |  |-  ( A e. CC -> ( -u _pi <_ ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <-> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) | 
						
							| 73 | 70 72 | mpbid |  |-  ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) | 
						
							| 74 | 67 | rexri |  |-  -u _pi e. RR* | 
						
							| 75 |  | elioc2 |  |-  ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) ) | 
						
							| 76 | 74 36 75 | mp2an |  |-  ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) <-> ( -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. RR /\ -u _pi < -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) /\ -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) <_ _pi ) ) | 
						
							| 77 | 35 65 73 76 | syl3anbrc |  |-  ( A e. CC -> -u ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) | 
						
							| 78 | 33 77 | eqeltrd |  |-  ( A e. CC -> ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) | 
						
							| 79 |  | imf |  |-  Im : CC --> RR | 
						
							| 80 |  | ffn |  |-  ( Im : CC --> RR -> Im Fn CC ) | 
						
							| 81 |  | elpreima |  |-  ( Im Fn CC -> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) ) | 
						
							| 82 | 79 80 81 | mp2b |  |-  ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) <-> ( -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC /\ ( Im ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u _pi (,] _pi ) ) ) | 
						
							| 83 | 32 78 82 | sylanbrc |  |-  ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ( `' Im " ( -u _pi (,] _pi ) ) ) | 
						
							| 84 |  | logrn |  |-  ran log = ( `' Im " ( -u _pi (,] _pi ) ) | 
						
							| 85 | 83 84 | eleqtrrdi |  |-  ( A e. CC -> -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) | 
						
							| 86 |  | logeftb |  |-  ( ( ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) =/= 0 /\ -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. ran log ) -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) | 
						
							| 87 | 26 31 85 86 | syl3anc |  |-  ( A e. CC -> ( ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) <-> ( exp ` -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) | 
						
							| 88 | 29 87 | mpbird |  |-  ( A e. CC -> ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) = -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 90 |  | negicn |  |-  -u _i e. CC | 
						
							| 91 |  | mulneg2 |  |-  ( ( -u _i e. CC /\ ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 92 | 90 11 91 | sylancr |  |-  ( A e. CC -> ( -u _i x. -u ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 93 | 89 92 | eqtrd |  |-  ( A e. CC -> ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 94 |  | asinval |  |-  ( -u A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) | 
						
							| 95 | 19 94 | syl |  |-  ( A e. CC -> ( arcsin ` -u A ) = ( -u _i x. ( log ` ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) ) ) | 
						
							| 96 |  | asinval |  |-  ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 97 | 96 | negeqd |  |-  ( A e. CC -> -u ( arcsin ` A ) = -u ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 98 | 93 95 97 | 3eqtr4d |  |-  ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |