Step |
Hyp |
Ref |
Expression |
1 |
|
resinf1o |
|- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |
2 |
|
f1ocnv |
|- ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) -> `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) -1-1-onto-> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
3 |
|
f1of |
|- ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) -1-1-onto-> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) --> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
4 |
1 2 3
|
mp2b |
|- `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) --> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
5 |
4
|
ffvelrni |
|- ( A e. ( -u 1 [,] 1 ) -> ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
6 |
5
|
fvresd |
|- ( A e. ( -u 1 [,] 1 ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) |
7 |
|
f1ocnvfv2 |
|- ( ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) /\ A e. ( -u 1 [,] 1 ) ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
8 |
1 7
|
mpan |
|- ( A e. ( -u 1 [,] 1 ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
9 |
6 8
|
eqtr3d |
|- ( A e. ( -u 1 [,] 1 ) -> ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
10 |
9
|
fveq2d |
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( arcsin ` A ) ) |
11 |
|
reasinsin |
|- ( ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
12 |
5 11
|
syl |
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
13 |
10 12
|
eqtr3d |
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
14 |
13 5
|
eqeltrd |
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |