Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | asinrecl | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpire | |- ( _pi / 2 ) e. RR |
|
2 | 1 | renegcli | |- -u ( _pi / 2 ) e. RR |
3 | iccssre | |- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR ) |
|
4 | 2 1 3 | mp2an | |- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR |
5 | asinrebnd | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
6 | 4 5 | sselid | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR ) |