Metamath Proof Explorer


Theorem asinrecl

Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrecl
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 halfpire
 |-  ( _pi / 2 ) e. RR
2 1 renegcli
 |-  -u ( _pi / 2 ) e. RR
3 iccssre
 |-  ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR )
4 2 1 3 mp2an
 |-  ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR
5 asinrebnd
 |-  ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )
6 4 5 sseldi
 |-  ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR )