| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( x = A -> ( _i x. x ) = ( _i x. A ) ) | 
						
							| 2 |  | oveq1 |  |-  ( x = A -> ( x ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( x = A -> ( 1 - ( x ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( x = A -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) | 
						
							| 5 | 1 4 | oveq12d |  |-  ( x = A -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( x = A -> ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = A -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 8 |  | df-asin |  |-  arcsin = ( x e. CC |-> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) ) | 
						
							| 9 |  | ovex |  |-  ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. _V | 
						
							| 10 | 7 8 9 | fvmpt |  |-  ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |