Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
2 |
|
oveq1 |
|- ( x = A -> ( x ^ 2 ) = ( A ^ 2 ) ) |
3 |
2
|
oveq2d |
|- ( x = A -> ( 1 - ( x ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) |
4 |
3
|
fveq2d |
|- ( x = A -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
5 |
1 4
|
oveq12d |
|- ( x = A -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
6 |
5
|
fveq2d |
|- ( x = A -> ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
7 |
6
|
oveq2d |
|- ( x = A -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
8 |
|
df-asin |
|- arcsin = ( x e. CC |-> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) ) |
9 |
|
ovex |
|- ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |