| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a |  |-  A = ( AlgSpan ` W ) | 
						
							| 2 |  | aspval.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | aspval.l |  |-  L = ( LSubSp ` W ) | 
						
							| 4 |  | simp1 |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> W e. AssAlg ) | 
						
							| 5 | 2 | subrgss |  |-  ( S e. ( SubRing ` W ) -> S C_ V ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S C_ V ) | 
						
							| 7 | 1 2 3 | aspval |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) | 
						
							| 9 |  | 3simpc |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( S e. ( SubRing ` W ) /\ S e. L ) ) | 
						
							| 10 |  | elin |  |-  ( S e. ( ( SubRing ` W ) i^i L ) <-> ( S e. ( SubRing ` W ) /\ S e. L ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S e. ( ( SubRing ` W ) i^i L ) ) | 
						
							| 12 |  | intmin |  |-  ( S e. ( ( SubRing ` W ) i^i L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) | 
						
							| 14 | 8 13 | eqtrd |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = S ) |