Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
|- A = ( AlgSpan ` W ) |
2 |
|
aspval.v |
|- V = ( Base ` W ) |
3 |
|
aspval.l |
|- L = ( LSubSp ` W ) |
4 |
1 2 3
|
aspval |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
5 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
6 |
5
|
adantr |
|- ( ( W e. AssAlg /\ S C_ V ) -> W e. LMod ) |
7 |
|
ssrab2 |
|- { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ ( ( SubRing ` W ) i^i L ) |
8 |
|
inss2 |
|- ( ( SubRing ` W ) i^i L ) C_ L |
9 |
7 8
|
sstri |
|- { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L |
10 |
9
|
a1i |
|- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L ) |
11 |
|
fvex |
|- ( A ` S ) e. _V |
12 |
4 11
|
eqeltrrdi |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
13 |
|
intex |
|- ( { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
14 |
12 13
|
sylibr |
|- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) ) |
15 |
3
|
lssintcl |
|- ( ( W e. LMod /\ { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L /\ { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. L ) |
16 |
6 10 14 15
|
syl3anc |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. L ) |
17 |
4 16
|
eqeltrd |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. L ) |