Metamath Proof Explorer


Theorem aspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a
|- A = ( AlgSpan ` W )
aspval.v
|- V = ( Base ` W )
Assertion aspss
|- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) C_ ( A ` S ) )

Proof

Step Hyp Ref Expression
1 aspval.a
 |-  A = ( AlgSpan ` W )
2 aspval.v
 |-  V = ( Base ` W )
3 simpl3
 |-  ( ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) /\ t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) ) -> T C_ S )
4 sstr2
 |-  ( T C_ S -> ( S C_ t -> T C_ t ) )
5 3 4 syl
 |-  ( ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) /\ t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) ) -> ( S C_ t -> T C_ t ) )
6 5 ss2rabdv
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } )
7 intss
 |-  ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
8 6 7 syl
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
9 simp1
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> W e. AssAlg )
10 simp3
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> T C_ S )
11 simp2
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> S C_ V )
12 10 11 sstrd
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> T C_ V )
13 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
14 1 2 13 aspval
 |-  ( ( W e. AssAlg /\ T C_ V ) -> ( A ` T ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } )
15 9 12 14 syl2anc
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } )
16 1 2 13 aspval
 |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
17 16 3adant3
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
18 8 15 17 3sstr4d
 |-  ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) C_ ( A ` S ) )