Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
aspval.v | |- V = ( Base ` W ) |
||
Assertion | aspssid | |- ( ( W e. AssAlg /\ S C_ V ) -> S C_ ( A ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
2 | aspval.v | |- V = ( Base ` W ) |
|
3 | ssintub | |- S C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } |
|
4 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
5 | 1 2 4 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
6 | 3 5 | sseqtrrid | |- ( ( W e. AssAlg /\ S C_ V ) -> S C_ ( A ` S ) ) |