Metamath Proof Explorer


Theorem aspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a
|- A = ( AlgSpan ` W )
aspval.v
|- V = ( Base ` W )
Assertion aspssid
|- ( ( W e. AssAlg /\ S C_ V ) -> S C_ ( A ` S ) )

Proof

Step Hyp Ref Expression
1 aspval.a
 |-  A = ( AlgSpan ` W )
2 aspval.v
 |-  V = ( Base ` W )
3 ssintub
 |-  S C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t }
4 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
5 1 2 4 aspval
 |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
6 3 5 sseqtrrid
 |-  ( ( W e. AssAlg /\ S C_ V ) -> S C_ ( A ` S ) )