Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
|- A = ( AlgSpan ` W ) |
2 |
|
aspval.v |
|- V = ( Base ` W ) |
3 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
4 |
1 2 3
|
aspval |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
5 |
|
ssrab2 |
|- { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) |
6 |
|
inss1 |
|- ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) C_ ( SubRing ` W ) |
7 |
5 6
|
sstri |
|- { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) |
8 |
|
fvex |
|- ( A ` S ) e. _V |
9 |
4 8
|
eqeltrrdi |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) |
10 |
|
intex |
|- ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) |
11 |
9 10
|
sylibr |
|- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) |
12 |
|
subrgint |
|- ( ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) /\ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) |
13 |
7 11 12
|
sylancr |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) |
14 |
4 13
|
eqeltrd |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) ) |