Metamath Proof Explorer


Theorem aspsubrg

Description: The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a
|- A = ( AlgSpan ` W )
aspval.v
|- V = ( Base ` W )
Assertion aspsubrg
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) )

Proof

Step Hyp Ref Expression
1 aspval.a
 |-  A = ( AlgSpan ` W )
2 aspval.v
 |-  V = ( Base ` W )
3 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
4 1 2 3 aspval
 |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } )
5 ssrab2
 |-  { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( ( SubRing ` W ) i^i ( LSubSp ` W ) )
6 inss1
 |-  ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) C_ ( SubRing ` W )
7 5 6 sstri
 |-  { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W )
8 fvex
 |-  ( A ` S ) e. _V
9 4 8 eqeltrrdi
 |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V )
10 intex
 |-  ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V )
11 9 10 sylibr
 |-  ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) )
12 subrgint
 |-  ( ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) /\ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) )
13 7 11 12 sylancr
 |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) )
14 4 13 eqeltrd
 |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) )