| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a |  |-  A = ( AlgSpan ` W ) | 
						
							| 2 |  | aspval.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | aspval.l |  |-  L = ( LSubSp ` W ) | 
						
							| 4 |  | fveq2 |  |-  ( w = W -> ( Base ` w ) = ( Base ` W ) ) | 
						
							| 5 | 4 2 | eqtr4di |  |-  ( w = W -> ( Base ` w ) = V ) | 
						
							| 6 | 5 | pweqd |  |-  ( w = W -> ~P ( Base ` w ) = ~P V ) | 
						
							| 7 |  | fveq2 |  |-  ( w = W -> ( SubRing ` w ) = ( SubRing ` W ) ) | 
						
							| 8 |  | fveq2 |  |-  ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) | 
						
							| 9 | 8 3 | eqtr4di |  |-  ( w = W -> ( LSubSp ` w ) = L ) | 
						
							| 10 | 7 9 | ineq12d |  |-  ( w = W -> ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) = ( ( SubRing ` W ) i^i L ) ) | 
						
							| 11 | 10 | rabeqdv |  |-  ( w = W -> { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) | 
						
							| 12 | 11 | inteqd |  |-  ( w = W -> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) | 
						
							| 13 | 6 12 | mpteq12dv |  |-  ( w = W -> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) | 
						
							| 14 |  | df-asp |  |-  AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) | 
						
							| 15 | 2 | fvexi |  |-  V e. _V | 
						
							| 16 | 15 | pwex |  |-  ~P V e. _V | 
						
							| 17 | 16 | mptex |  |-  ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) e. _V | 
						
							| 18 | 13 14 17 | fvmpt |  |-  ( W e. AssAlg -> ( AlgSpan ` W ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) | 
						
							| 19 | 1 18 | eqtrid |  |-  ( W e. AssAlg -> A = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) | 
						
							| 20 | 19 | fveq1d |  |-  ( W e. AssAlg -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) | 
						
							| 22 |  | eqid |  |-  ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) | 
						
							| 23 |  | sseq1 |  |-  ( s = S -> ( s C_ t <-> S C_ t ) ) | 
						
							| 24 | 23 | rabbidv |  |-  ( s = S -> { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) | 
						
							| 25 | 24 | inteqd |  |-  ( s = S -> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) | 
						
							| 26 |  | simpr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) | 
						
							| 27 | 15 | elpw2 |  |-  ( S e. ~P V <-> S C_ V ) | 
						
							| 28 | 26 27 | sylibr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> S e. ~P V ) | 
						
							| 29 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 30 | 2 | subrgid |  |-  ( W e. Ring -> V e. ( SubRing ` W ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( W e. AssAlg -> V e. ( SubRing ` W ) ) | 
						
							| 32 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 33 | 2 3 | lss1 |  |-  ( W e. LMod -> V e. L ) | 
						
							| 34 | 32 33 | syl |  |-  ( W e. AssAlg -> V e. L ) | 
						
							| 35 | 31 34 | elind |  |-  ( W e. AssAlg -> V e. ( ( SubRing ` W ) i^i L ) ) | 
						
							| 36 |  | sseq2 |  |-  ( t = V -> ( S C_ t <-> S C_ V ) ) | 
						
							| 37 | 36 | rspcev |  |-  ( ( V e. ( ( SubRing ` W ) i^i L ) /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) | 
						
							| 38 | 35 37 | sylan |  |-  ( ( W e. AssAlg /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) | 
						
							| 39 |  | intexrab |  |-  ( E. t e. ( ( SubRing ` W ) i^i L ) S C_ t <-> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) | 
						
							| 40 | 38 39 | sylib |  |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) | 
						
							| 41 | 22 25 28 40 | fvmptd3 |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) | 
						
							| 42 | 21 41 | eqtrd |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |