Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
|- A = ( AlgSpan ` W ) |
2 |
|
aspval.v |
|- V = ( Base ` W ) |
3 |
|
aspval.l |
|- L = ( LSubSp ` W ) |
4 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
5 |
4 2
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
6 |
5
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P V ) |
7 |
|
fveq2 |
|- ( w = W -> ( SubRing ` w ) = ( SubRing ` W ) ) |
8 |
|
fveq2 |
|- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
9 |
8 3
|
eqtr4di |
|- ( w = W -> ( LSubSp ` w ) = L ) |
10 |
7 9
|
ineq12d |
|- ( w = W -> ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) = ( ( SubRing ` W ) i^i L ) ) |
11 |
10
|
rabeqdv |
|- ( w = W -> { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
12 |
11
|
inteqd |
|- ( w = W -> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
13 |
6 12
|
mpteq12dv |
|- ( w = W -> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
14 |
|
df-asp |
|- AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |
15 |
2
|
fvexi |
|- V e. _V |
16 |
15
|
pwex |
|- ~P V e. _V |
17 |
16
|
mptex |
|- ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) e. _V |
18 |
13 14 17
|
fvmpt |
|- ( W e. AssAlg -> ( AlgSpan ` W ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
19 |
1 18
|
eqtrid |
|- ( W e. AssAlg -> A = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ) |
20 |
19
|
fveq1d |
|- ( W e. AssAlg -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) |
21 |
20
|
adantr |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) ) |
22 |
|
eqid |
|- ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) = ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) |
23 |
|
sseq1 |
|- ( s = S -> ( s C_ t <-> S C_ t ) ) |
24 |
23
|
rabbidv |
|- ( s = S -> { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
25 |
24
|
inteqd |
|- ( s = S -> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
26 |
|
simpr |
|- ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) |
27 |
15
|
elpw2 |
|- ( S e. ~P V <-> S C_ V ) |
28 |
26 27
|
sylibr |
|- ( ( W e. AssAlg /\ S C_ V ) -> S e. ~P V ) |
29 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
30 |
2
|
subrgid |
|- ( W e. Ring -> V e. ( SubRing ` W ) ) |
31 |
29 30
|
syl |
|- ( W e. AssAlg -> V e. ( SubRing ` W ) ) |
32 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
33 |
2 3
|
lss1 |
|- ( W e. LMod -> V e. L ) |
34 |
32 33
|
syl |
|- ( W e. AssAlg -> V e. L ) |
35 |
31 34
|
elind |
|- ( W e. AssAlg -> V e. ( ( SubRing ` W ) i^i L ) ) |
36 |
|
sseq2 |
|- ( t = V -> ( S C_ t <-> S C_ V ) ) |
37 |
36
|
rspcev |
|- ( ( V e. ( ( SubRing ` W ) i^i L ) /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) |
38 |
35 37
|
sylan |
|- ( ( W e. AssAlg /\ S C_ V ) -> E. t e. ( ( SubRing ` W ) i^i L ) S C_ t ) |
39 |
|
intexrab |
|- ( E. t e. ( ( SubRing ` W ) i^i L ) S C_ t <-> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
40 |
38 39
|
sylib |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
41 |
22 25 28 40
|
fvmptd3 |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( ( s e. ~P V |-> |^| { t e. ( ( SubRing ` W ) i^i L ) | s C_ t } ) ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
42 |
21 41
|
eqtrd |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |