| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval2.a |  |-  A = ( AlgSpan ` W ) | 
						
							| 2 |  | aspval2.c |  |-  C = ( algSc ` W ) | 
						
							| 3 |  | aspval2.r |  |-  R = ( mrCls ` ( SubRing ` W ) ) | 
						
							| 4 |  | aspval2.v |  |-  V = ( Base ` W ) | 
						
							| 5 |  | elin |  |-  ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) <-> ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) ) | 
						
							| 6 | 5 | anbi1i |  |-  ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) ) | 
						
							| 7 |  | anass |  |-  ( ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) | 
						
							| 9 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 10 | 2 9 | issubassa2 |  |-  ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( x e. ( LSubSp ` W ) <-> ran C C_ x ) ) | 
						
							| 11 | 10 | anbi1d |  |-  ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C C_ x /\ S C_ x ) ) ) | 
						
							| 12 |  | unss |  |-  ( ( ran C C_ x /\ S C_ x ) <-> ( ran C u. S ) C_ x ) | 
						
							| 13 | 11 12 | bitrdi |  |-  ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C u. S ) C_ x ) ) | 
						
							| 14 | 13 | pm5.32da |  |-  ( W e. AssAlg -> ( ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) | 
						
							| 15 | 8 14 | bitrid |  |-  ( W e. AssAlg -> ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) | 
						
							| 16 | 15 | abbidv |  |-  ( W e. AssAlg -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) | 
						
							| 17 | 16 | adantr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) | 
						
							| 18 |  | df-rab |  |-  { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } | 
						
							| 19 |  | df-rab |  |-  { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } | 
						
							| 20 | 17 18 19 | 3eqtr4g |  |-  ( ( W e. AssAlg /\ S C_ V ) -> { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) | 
						
							| 21 | 20 | inteqd |  |-  ( ( W e. AssAlg /\ S C_ V ) -> |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) | 
						
							| 22 | 1 4 9 | aspval |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } ) | 
						
							| 23 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 24 | 4 | subrgmre |  |-  ( W e. Ring -> ( SubRing ` W ) e. ( Moore ` V ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( W e. AssAlg -> ( SubRing ` W ) e. ( Moore ` V ) ) | 
						
							| 26 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 27 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 28 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 29 | 2 26 23 27 28 4 | asclf |  |-  ( W e. AssAlg -> C : ( Base ` ( Scalar ` W ) ) --> V ) | 
						
							| 30 | 29 | frnd |  |-  ( W e. AssAlg -> ran C C_ V ) | 
						
							| 31 | 30 | adantr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ran C C_ V ) | 
						
							| 32 |  | simpr |  |-  ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) | 
						
							| 33 | 31 32 | unssd |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( ran C u. S ) C_ V ) | 
						
							| 34 | 3 | mrcval |  |-  ( ( ( SubRing ` W ) e. ( Moore ` V ) /\ ( ran C u. S ) C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) | 
						
							| 35 | 25 33 34 | syl2an2r |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) | 
						
							| 36 | 21 22 35 | 3eqtr4d |  |-  ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( R ` ( ran C u. S ) ) ) |