Step |
Hyp |
Ref |
Expression |
1 |
|
aspval2.a |
|- A = ( AlgSpan ` W ) |
2 |
|
aspval2.c |
|- C = ( algSc ` W ) |
3 |
|
aspval2.r |
|- R = ( mrCls ` ( SubRing ` W ) ) |
4 |
|
aspval2.v |
|- V = ( Base ` W ) |
5 |
|
elin |
|- ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) <-> ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) ) |
6 |
5
|
anbi1i |
|- ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) ) |
7 |
|
anass |
|- ( ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) |
8 |
6 7
|
bitri |
|- ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
2 9
|
issubassa2 |
|- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( x e. ( LSubSp ` W ) <-> ran C C_ x ) ) |
11 |
10
|
anbi1d |
|- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C C_ x /\ S C_ x ) ) ) |
12 |
|
unss |
|- ( ( ran C C_ x /\ S C_ x ) <-> ( ran C u. S ) C_ x ) |
13 |
11 12
|
bitrdi |
|- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C u. S ) C_ x ) ) |
14 |
13
|
pm5.32da |
|- ( W e. AssAlg -> ( ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) |
15 |
8 14
|
syl5bb |
|- ( W e. AssAlg -> ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) |
16 |
15
|
abbidv |
|- ( W e. AssAlg -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) |
17 |
16
|
adantr |
|- ( ( W e. AssAlg /\ S C_ V ) -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) |
18 |
|
df-rab |
|- { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } |
19 |
|
df-rab |
|- { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } |
20 |
17 18 19
|
3eqtr4g |
|- ( ( W e. AssAlg /\ S C_ V ) -> { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
21 |
20
|
inteqd |
|- ( ( W e. AssAlg /\ S C_ V ) -> |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
22 |
1 4 9
|
aspval |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } ) |
23 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
24 |
4
|
subrgmre |
|- ( W e. Ring -> ( SubRing ` W ) e. ( Moore ` V ) ) |
25 |
23 24
|
syl |
|- ( W e. AssAlg -> ( SubRing ` W ) e. ( Moore ` V ) ) |
26 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
27 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
29 |
2 26 23 27 28 4
|
asclf |
|- ( W e. AssAlg -> C : ( Base ` ( Scalar ` W ) ) --> V ) |
30 |
29
|
frnd |
|- ( W e. AssAlg -> ran C C_ V ) |
31 |
30
|
adantr |
|- ( ( W e. AssAlg /\ S C_ V ) -> ran C C_ V ) |
32 |
|
simpr |
|- ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) |
33 |
31 32
|
unssd |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( ran C u. S ) C_ V ) |
34 |
3
|
mrcval |
|- ( ( ( SubRing ` W ) e. ( Moore ` V ) /\ ( ran C u. S ) C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
35 |
25 33 34
|
syl2an2r |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
36 |
21 22 35
|
3eqtr4d |
|- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( R ` ( ran C u. S ) ) ) |