Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassa.v | |- V = ( Base ` W ) | |
| isassa.f | |- F = ( Scalar ` W ) | ||
| isassa.b | |- B = ( Base ` F ) | ||
| isassa.s | |- .x. = ( .s ` W ) | ||
| isassa.t | |- .X. = ( .r ` W ) | ||
| Assertion | assaass | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isassa.v | |- V = ( Base ` W ) | |
| 2 | isassa.f | |- F = ( Scalar ` W ) | |
| 3 | isassa.b | |- B = ( Base ` F ) | |
| 4 | isassa.s | |- .x. = ( .s ` W ) | |
| 5 | isassa.t | |- .X. = ( .r ` W ) | |
| 6 | 1 2 3 4 5 | assalem | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) | 
| 7 | 6 | simpld | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) |