Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isassa.v | |- V = ( Base ` W ) |
|
isassa.f | |- F = ( Scalar ` W ) |
||
isassa.b | |- B = ( Base ` F ) |
||
isassa.s | |- .x. = ( .s ` W ) |
||
isassa.t | |- .X. = ( .r ` W ) |
||
Assertion | assaassr | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassa.v | |- V = ( Base ` W ) |
|
2 | isassa.f | |- F = ( Scalar ` W ) |
|
3 | isassa.b | |- B = ( Base ` F ) |
|
4 | isassa.s | |- .x. = ( .s ` W ) |
|
5 | isassa.t | |- .X. = ( .r ` W ) |
|
6 | 1 2 3 4 5 | assalem | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) |
7 | 6 | simprd | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) |