| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assamulgscm.v |
|- V = ( Base ` W ) |
| 2 |
|
assamulgscm.f |
|- F = ( Scalar ` W ) |
| 3 |
|
assamulgscm.b |
|- B = ( Base ` F ) |
| 4 |
|
assamulgscm.s |
|- .x. = ( .s ` W ) |
| 5 |
|
assamulgscm.g |
|- G = ( mulGrp ` F ) |
| 6 |
|
assamulgscm.p |
|- .^ = ( .g ` G ) |
| 7 |
|
assamulgscm.h |
|- H = ( mulGrp ` W ) |
| 8 |
|
assamulgscm.e |
|- E = ( .g ` H ) |
| 9 |
|
oveq1 |
|- ( x = 0 -> ( x E ( A .x. X ) ) = ( 0 E ( A .x. X ) ) ) |
| 10 |
|
oveq1 |
|- ( x = 0 -> ( x .^ A ) = ( 0 .^ A ) ) |
| 11 |
|
oveq1 |
|- ( x = 0 -> ( x E X ) = ( 0 E X ) ) |
| 12 |
10 11
|
oveq12d |
|- ( x = 0 -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |
| 13 |
9 12
|
eqeq12d |
|- ( x = 0 -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( x = 0 -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) ) ) |
| 15 |
|
oveq1 |
|- ( x = y -> ( x E ( A .x. X ) ) = ( y E ( A .x. X ) ) ) |
| 16 |
|
oveq1 |
|- ( x = y -> ( x .^ A ) = ( y .^ A ) ) |
| 17 |
|
oveq1 |
|- ( x = y -> ( x E X ) = ( y E X ) ) |
| 18 |
16 17
|
oveq12d |
|- ( x = y -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) |
| 19 |
15 18
|
eqeq12d |
|- ( x = y -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( x = y -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) ) ) |
| 21 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x E ( A .x. X ) ) = ( ( y + 1 ) E ( A .x. X ) ) ) |
| 22 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ A ) = ( ( y + 1 ) .^ A ) ) |
| 23 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x E X ) = ( ( y + 1 ) E X ) ) |
| 24 |
22 23
|
oveq12d |
|- ( x = ( y + 1 ) -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) |
| 25 |
21 24
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) |
| 26 |
25
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 27 |
|
oveq1 |
|- ( x = N -> ( x E ( A .x. X ) ) = ( N E ( A .x. X ) ) ) |
| 28 |
|
oveq1 |
|- ( x = N -> ( x .^ A ) = ( N .^ A ) ) |
| 29 |
|
oveq1 |
|- ( x = N -> ( x E X ) = ( N E X ) ) |
| 30 |
28 29
|
oveq12d |
|- ( x = N -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) |
| 31 |
27 30
|
eqeq12d |
|- ( x = N -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 32 |
31
|
imbi2d |
|- ( x = N -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) ) |
| 33 |
1 2 3 4 5 6 7 8
|
assamulgscmlem1 |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |
| 34 |
1 2 3 4 5 6 7 8
|
assamulgscmlem2 |
|- ( y e. NN0 -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 35 |
34
|
a2d |
|- ( y e. NN0 -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 36 |
14 20 26 32 33 35
|
nn0ind |
|- ( N e. NN0 -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 37 |
36
|
exp4c |
|- ( N e. NN0 -> ( A e. B -> ( X e. V -> ( W e. AssAlg -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) ) ) |
| 38 |
37
|
3imp |
|- ( ( N e. NN0 /\ A e. B /\ X e. V ) -> ( W e. AssAlg -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 39 |
38
|
impcom |
|- ( ( W e. AssAlg /\ ( N e. NN0 /\ A e. B /\ X e. V ) ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) |