Step |
Hyp |
Ref |
Expression |
1 |
|
assamulgscm.v |
|- V = ( Base ` W ) |
2 |
|
assamulgscm.f |
|- F = ( Scalar ` W ) |
3 |
|
assamulgscm.b |
|- B = ( Base ` F ) |
4 |
|
assamulgscm.s |
|- .x. = ( .s ` W ) |
5 |
|
assamulgscm.g |
|- G = ( mulGrp ` F ) |
6 |
|
assamulgscm.p |
|- .^ = ( .g ` G ) |
7 |
|
assamulgscm.h |
|- H = ( mulGrp ` W ) |
8 |
|
assamulgscm.e |
|- E = ( .g ` H ) |
9 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
11 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
12 |
1 11
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. V ) |
13 |
10 12
|
syl |
|- ( W e. AssAlg -> ( 1r ` W ) e. V ) |
14 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
15 |
1 2 4 14
|
lmodvs1 |
|- ( ( W e. LMod /\ ( 1r ` W ) e. V ) -> ( ( 1r ` F ) .x. ( 1r ` W ) ) = ( 1r ` W ) ) |
16 |
15
|
eqcomd |
|- ( ( W e. LMod /\ ( 1r ` W ) e. V ) -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
17 |
9 13 16
|
syl2anc |
|- ( W e. AssAlg -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
18 |
17
|
adantl |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 1r ` W ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
19 |
9
|
adantl |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> W e. LMod ) |
20 |
|
simpll |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> A e. B ) |
21 |
|
simplr |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> X e. V ) |
22 |
1 2 4 3
|
lmodvscl |
|- ( ( W e. LMod /\ A e. B /\ X e. V ) -> ( A .x. X ) e. V ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( A .x. X ) e. V ) |
24 |
7 1
|
mgpbas |
|- V = ( Base ` H ) |
25 |
7 11
|
ringidval |
|- ( 1r ` W ) = ( 0g ` H ) |
26 |
24 25 8
|
mulg0 |
|- ( ( A .x. X ) e. V -> ( 0 E ( A .x. X ) ) = ( 1r ` W ) ) |
27 |
23 26
|
syl |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( 1r ` W ) ) |
28 |
5 3
|
mgpbas |
|- B = ( Base ` G ) |
29 |
5 14
|
ringidval |
|- ( 1r ` F ) = ( 0g ` G ) |
30 |
28 29 6
|
mulg0 |
|- ( A e. B -> ( 0 .^ A ) = ( 1r ` F ) ) |
31 |
20 30
|
syl |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 .^ A ) = ( 1r ` F ) ) |
32 |
24 25 8
|
mulg0 |
|- ( X e. V -> ( 0 E X ) = ( 1r ` W ) ) |
33 |
21 32
|
syl |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E X ) = ( 1r ` W ) ) |
34 |
31 33
|
oveq12d |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( 0 .^ A ) .x. ( 0 E X ) ) = ( ( 1r ` F ) .x. ( 1r ` W ) ) ) |
35 |
18 27 34
|
3eqtr4d |
|- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |