Metamath Proof Explorer


Theorem assraddsubd

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses assraddsubd.1
|- ( ph -> B e. CC )
assraddsubd.2
|- ( ph -> C e. CC )
assraddsubd.3
|- ( ph -> D e. CC )
assraddsubd.4
|- ( ph -> A = ( ( B + C ) - D ) )
Assertion assraddsubd
|- ( ph -> A = ( B + ( C - D ) ) )

Proof

Step Hyp Ref Expression
1 assraddsubd.1
 |-  ( ph -> B e. CC )
2 assraddsubd.2
 |-  ( ph -> C e. CC )
3 assraddsubd.3
 |-  ( ph -> D e. CC )
4 assraddsubd.4
 |-  ( ph -> A = ( ( B + C ) - D ) )
5 1 2 3 addsubassd
 |-  ( ph -> ( ( B + C ) - D ) = ( B + ( C - D ) ) )
6 4 5 eqtrd
 |-  ( ph -> A = ( B + ( C - D ) ) )