Step |
Hyp |
Ref |
Expression |
1 |
|
atabs.1 |
|- A e. CH |
2 |
|
atabs.2 |
|- B e. CH |
3 |
|
inass |
|- ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) |
4 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
5 |
4
|
ineq1i |
|- ( ( A vH B ) i^i B ) = ( ( B vH A ) i^i B ) |
6 |
|
incom |
|- ( ( B vH A ) i^i B ) = ( B i^i ( B vH A ) ) |
7 |
2 1
|
chabs2i |
|- ( B i^i ( B vH A ) ) = B |
8 |
5 6 7
|
3eqtri |
|- ( ( A vH B ) i^i B ) = B |
9 |
8
|
ineq2i |
|- ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) = ( ( A vH C ) i^i B ) |
10 |
3 9
|
eqtr2i |
|- ( ( A vH C ) i^i B ) = ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) |
11 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
12 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
13 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
14 |
|
atmd |
|- ( ( C e. HAtoms /\ ( A vH B ) e. CH ) -> C MH ( A vH B ) ) |
15 |
13 14
|
mpan2 |
|- ( C e. HAtoms -> C MH ( A vH B ) ) |
16 |
|
mdi |
|- ( ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) /\ ( C MH ( A vH B ) /\ A C_ ( A vH B ) ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) |
17 |
16
|
exp32 |
|- ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) -> ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) ) |
18 |
13 1 17
|
mp3an23 |
|- ( C e. CH -> ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) ) |
19 |
12 15 18
|
sylc |
|- ( C e. HAtoms -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) |
20 |
11 19
|
mpi |
|- ( C e. HAtoms -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) |
21 |
20
|
adantr |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) |
22 |
|
incom |
|- ( C i^i ( A vH B ) ) = ( ( A vH B ) i^i C ) |
23 |
|
atnssm0 |
|- ( ( ( A vH B ) e. CH /\ C e. HAtoms ) -> ( -. C C_ ( A vH B ) <-> ( ( A vH B ) i^i C ) = 0H ) ) |
24 |
13 23
|
mpan |
|- ( C e. HAtoms -> ( -. C C_ ( A vH B ) <-> ( ( A vH B ) i^i C ) = 0H ) ) |
25 |
24
|
biimpa |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( ( A vH B ) i^i C ) = 0H ) |
26 |
22 25
|
syl5eq |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( C i^i ( A vH B ) ) = 0H ) |
27 |
26
|
oveq2d |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( A vH ( C i^i ( A vH B ) ) ) = ( A vH 0H ) ) |
28 |
1
|
chj0i |
|- ( A vH 0H ) = A |
29 |
27 28
|
eqtrdi |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( A vH ( C i^i ( A vH B ) ) ) = A ) |
30 |
21 29
|
eqtrd |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = A ) |
31 |
30
|
ineq1d |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( A i^i B ) ) |
32 |
10 31
|
syl5eq |
|- ( ( C e. HAtoms /\ -. C C_ ( A vH B ) ) -> ( ( A vH C ) i^i B ) = ( A i^i B ) ) |
33 |
32
|
ex |
|- ( C e. HAtoms -> ( -. C C_ ( A vH B ) -> ( ( A vH C ) i^i B ) = ( A i^i B ) ) ) |