Step |
Hyp |
Ref |
Expression |
1 |
|
neg0 |
|- -u 0 = 0 |
2 |
1
|
fveq2i |
|- ( arctan ` -u 0 ) = ( arctan ` 0 ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
atanre |
|- ( 0 e. RR -> 0 e. dom arctan ) |
5 |
|
atanneg |
|- ( 0 e. dom arctan -> ( arctan ` -u 0 ) = -u ( arctan ` 0 ) ) |
6 |
3 4 5
|
mp2b |
|- ( arctan ` -u 0 ) = -u ( arctan ` 0 ) |
7 |
2 6
|
eqtr3i |
|- ( arctan ` 0 ) = -u ( arctan ` 0 ) |
8 |
|
atancl |
|- ( 0 e. dom arctan -> ( arctan ` 0 ) e. CC ) |
9 |
3 4 8
|
mp2b |
|- ( arctan ` 0 ) e. CC |
10 |
9
|
eqnegi |
|- ( ( arctan ` 0 ) = -u ( arctan ` 0 ) <-> ( arctan ` 0 ) = 0 ) |
11 |
7 10
|
mpbi |
|- ( arctan ` 0 ) = 0 |