| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atanre | 
							 |-  ( A e. RR -> A e. dom arctan )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ A < 0 ) -> A e. dom arctan )  | 
						
						
							| 3 | 
							
								
							 | 
							atanneg | 
							 |-  ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) = -u ( arctan ` A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							renegcl | 
							 |-  ( A e. RR -> -u A e. RR )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ A < 0 ) -> -u A e. RR )  | 
						
						
							| 7 | 
							
								
							 | 
							lt0neg1 | 
							 |-  ( A e. RR -> ( A < 0 <-> 0 < -u A ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpa | 
							 |-  ( ( A e. RR /\ A < 0 ) -> 0 < -u A )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							elrpd | 
							 |-  ( ( A e. RR /\ A < 0 ) -> -u A e. RR+ )  | 
						
						
							| 10 | 
							
								
							 | 
							atanbndlem | 
							 |-  ( -u A e. RR+ -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							eqeltrrd | 
							 |-  ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							halfpire | 
							 |-  ( _pi / 2 ) e. RR  | 
						
						
							| 14 | 
							
								13
							 | 
							recni | 
							 |-  ( _pi / 2 ) e. CC  | 
						
						
							| 15 | 
							
								14
							 | 
							negnegi | 
							 |-  -u -u ( _pi / 2 ) = ( _pi / 2 )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2i | 
							 |-  ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							eleqtrrdi | 
							 |-  ( ( A e. RR /\ A < 0 ) -> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							neghalfpire | 
							 |-  -u ( _pi / 2 ) e. RR  | 
						
						
							| 19 | 
							
								
							 | 
							atanrecl | 
							 |-  ( A e. RR -> ( arctan ` A ) e. RR )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. RR )  | 
						
						
							| 21 | 
							
								
							 | 
							iooneg | 
							 |-  ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( arctan ` A ) e. RR ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) )  | 
						
						
							| 22 | 
							
								18 13 20 21
							 | 
							mp3an12i | 
							 |-  ( ( A e. RR /\ A < 0 ) -> ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							mpbird | 
							 |-  ( ( A e. RR /\ A < 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( A e. RR /\ A = 0 ) -> A = 0 )  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2d | 
							 |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							atan0 | 
							 |-  ( arctan ` 0 ) = 0  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqtrdi | 
							 |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = 0 )  | 
						
						
							| 28 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 29 | 
							
								
							 | 
							pirp | 
							 |-  _pi e. RR+  | 
						
						
							| 30 | 
							
								
							 | 
							rphalfcl | 
							 |-  ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ )  | 
						
						
							| 31 | 
							
								
							 | 
							rpgt0 | 
							 |-  ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) )  | 
						
						
							| 32 | 
							
								29 30 31
							 | 
							mp2b | 
							 |-  0 < ( _pi / 2 )  | 
						
						
							| 33 | 
							
								
							 | 
							lt0neg2 | 
							 |-  ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) )  | 
						
						
							| 34 | 
							
								13 33
							 | 
							ax-mp | 
							 |-  ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							mpbi | 
							 |-  -u ( _pi / 2 ) < 0  | 
						
						
							| 36 | 
							
								18
							 | 
							rexri | 
							 |-  -u ( _pi / 2 ) e. RR*  | 
						
						
							| 37 | 
							
								13
							 | 
							rexri | 
							 |-  ( _pi / 2 ) e. RR*  | 
						
						
							| 38 | 
							
								
							 | 
							elioo2 | 
							 |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) ) )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							mp2an | 
							 |-  ( 0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( 0 e. RR /\ -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) )  | 
						
						
							| 40 | 
							
								28 35 32 39
							 | 
							mpbir3an | 
							 |-  0 e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) )  | 
						
						
							| 41 | 
							
								27 40
							 | 
							eqeltrdi | 
							 |-  ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							elrp | 
							 |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) )  | 
						
						
							| 43 | 
							
								
							 | 
							atanbndlem | 
							 |-  ( A e. RR+ -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							sylbir | 
							 |-  ( ( A e. RR /\ 0 < A ) -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							lttri4 | 
							 |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) )  | 
						
						
							| 46 | 
							
								28 45
							 | 
							mpan2 | 
							 |-  ( A e. RR -> ( A < 0 \/ A = 0 \/ 0 < A ) )  | 
						
						
							| 47 | 
							
								23 41 44 46
							 | 
							mpjao3dan | 
							 |-  ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  |